6 research outputs found

    Citrus Flavanone Narirutin, In Vitro and In Silico Mechanistic Antidiabetic Potential

    No full text
    Citrus fruits and juices have been studied extensively for their potential involvement in the prevention of various diseases. Flavanones, the characteristic polyphenols of citrus species, are the primarily compounds responsible for these studied health benefits. Using in silico and in vitro methods, we are exploring the possible antidiabetic action of narirutin, a flavanone family member. The goal of the in silico research was to anticipate how narirutin would interact with eight distinct receptors implicated in diabetes control and complications, namely, dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), alpha-amylase (AAM), peroxisome proliferator-activated receptor gamma (PPAR-γ), alpha-glucosidase (AGL), while the in vitro study looked into narirutin’s possible inhibitory impact on alpha-amylase and alpha-glucosidase. The results indicate that the studied citrus flavanone interacted remarkably with most of the receptors and had an excellent inhibitory activity during the in vitro tests suggesting its potent role among the different constituent of the citrus compounds in the management of diabetes and also its complications

    <i>Amomum subulatum</i> Fruit Extract Mediated Green Synthesis of Silver and Copper Oxide Nanoparticles: Synthesis, Characterization, Antibacterial and Anticancer Activities

    No full text
    This research presents a straightforward, effective, and eco-friendly method for the production of silver nanoparticles (AgNPs) and copper oxide nanoparticles (CuONPs) using the dried fruit of Amomum subulatum as a reducing, stabilizing, and capping agent. The formation of AgNPs and CuONPs is supported by the presence of a surface plasmon resonance band (SPR) at 440 nm for AgNPs and 245 nm for CuONPs. Additionally, the identification of specific biomolecules responsible for the synthesis of AgNPs and CuONPs was confirmed through FTIR spectra analysis. The Transmission electron microscope (TEM) images demonstrated that AgNPs and CuONPs had spherical shapes, with mean particle diameters of 20.6 nm and 24.7 nm, respectively. X-ray diffraction and selected area electron diffraction (SAED) analyses provided evidence of the crystalline nature of the synthesized AgNPs and CuONPs. Additionally, the presence of silver and copper elements was observed through energy-dispersive X-ray spectroscopy (EDS) analysis. Furthermore, the antibacterial activity of AgNPs was found to be superior to that of CuONPs against human pathogens such as Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The cytotoxic activity of the biosynthesized nanoparticles (NPs) was evaluated in vitro against human cervical cells (HeLa) and human breast cells (MCF-7). In MCF-7 cells, the IC50 value for AgNPs was estimated to be 39.79 µg/mL, while that of CuONPs was 83.89 µg/mL. In HeLa cells, the IC50 value for AgNPs was 45.5 µg/mL, and for CuONPs, it was 97.07 µg/mL. For the first time, an eco-friendly method for the synthesis of AgNPs and CuONPs from fruit extract of Amomum subulatum has been discussed along with their comparative evaluation study. These results highlight the promising applications of the eco-friendly synthesized AgNPs and CuONPs as effective agents against microbial infections and potential candidates for cancer therapy

    Aggressive L3 vertebral hemangioma coexisting with adult thoracolumbar scoliosis: Case report

    No full text
    Vertebral hemangiomas are benign vascular tumors that are commonly asymptomatic. A low percentage might become aggressive; however, they are not known to be associated with scoliosis. We present a case of a third lumbar vertebral lesion coexisting with a moderate thoracolumbar scoliosis. The patient's initial presentation was back pain with bilateral lower limb radiculopathy and neurogenic claudication. Diagnosis was established using CT and MRI, which showed classical findings of an aggressive vertebral hemangioma. The patient underwent Partial hemangioma excision and scoliosis correction, with satisfactory outcome at 1 year follow up

    Anti-Struvite, Antimicrobial, and Anti-Inflammatory Activities of Aqueous and Ethanolic Extracts of <i>Saussurea costus</i> (Falc) Lipsch Asteraceae

    No full text
    Saussurea costus (Falc) Lipsch is a traditional herb used to treat kidney stone problems because it contains several molecules used to treat this health problem, such as quercitrin. Infectious stones are the most painful of all urinary tract disorders, with ammonium phosphate (struvite) and carbapatite stones being the most common, caused by a bacterial infection with urease activity. These stones are treated with antibiotics, but antibiotic resistance is on the rise. The current study investigated the anti-urolithic activities of S. costus aqueous and ethanolic extracts of against struvite crystals synthesized using microscopic crystallization and turbidimetric methods, respectively. The utilized methods indicated that the ethanolic extract of this plant has a significant inhibitory effect on struvite crystallization, with a percentage inhibition of (87.45 ± 1.107) (p −1 and a decrease in the number of struvite crystals, reaching values less than 100/mm3. For the number of struvite crystals inhibited by cystone, we found a value of 400/mm3 and with the aqueous extract we found 700/mm3. The antibacterial activity of the plant extracts studied was examined against several urease-producing bacteria, and this activity was evaluated by qualitative and quantitative evaluation methods; the highest minimum inhibitory concentration was seen in the ethanolic extract, with an MIC of 50 mg mL−1 for Staphylococcus aureus followed by an MIC of 200 mg mL−1 for Klebsiella pneumoniae. It showed a minimal bactericidal concentration (MBC) against S. aureus and K. pneumoniae (>50 mg mL−1 and >200 mg mL−1, respectively). Furthermore, to determine the extract’s anti-inflammatory activity, in vivo anti-inflammatory activity was investigated in rats. The results show that at a dose of 400 mg kg−1, the ethanolic extract has a maximum edema inhibition of 66%

    Fucoidan Ameliorates Oxidative Stress, Inflammation, DNA Damage, and Hepatorenal Injuries in Diabetic Rats Intoxicated with Aflatoxin B1

    No full text
    The current study was carried out to evaluate the ameliorative effect of fucoidan against aflatoxicosis-induced hepatorenal toxicity in streptozotocin-induced diabetic rats. Sixty-four Wister albino male rats were randomly assigned into eight groups (8 rats each) that received normal saline, fucoidan (FUC) at 100 mg/kg/day orally for 4 weeks, streptozotocin (STZ) at 50 mg/kg/i.p. single dose, STZ plus FUC, aflatoxin B1 (AFB1) at 50 μg/kg/i.p. after one month of the beginning of the experiment for 2 weeks, AFB1 plus FUC, STZ plus AFB1, or STZ plus AFB1 and FUC. Injection of rats with STZ induced hyperglycemia. Rats with STZ-induced diabetes, with or without AFB1 intoxication, had significantly elevated activities of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, and levels of serum urea, creatinine, cholesterol, 8-oxo-2′-deoxyguanosine, interleukin-1β, interleukin-6, and tumor necrosis factor-α. In addition, these rats exhibited increased lipid peroxidation and reduced glutathione concentration and activities of superoxide dismutase, catalase, and glutathione peroxidase enzymes in the hepatic and renal tissues. In contrast, administration of FUC to diabetic rats, with or without AFB1 intoxication, ameliorated the altered serum parameters, reduced oxidative stress, DNA damage, and inflammatory biomarkers, and enhanced the antioxidant defense system in the hepatic and renal tissues. These results indicated that FUC ameliorated diabetes and AFB1-induced hepatorenal injuries through alleviating oxidative stress, DNA damage, and inflammation
    corecore