20 research outputs found

    Assessing Spatial Patterns of Surface Soil Moisture and Vegetation Cover in Batifa, Kurdistan Region-Iraq: Machine Learning Approach

    No full text
    The accurate quantification of surface soil moisture (SSM) and vegetation cover using remote sensing techniques is essential for effective environmental management. This study investigated the spatial variations in SSM and vegetation cover in the Batifa region of the Kurdistan Region of Iraq. Landsat-8 images of the study area were classified using a support vector machine (SVM), and the soil land type was subsequently extracted. A random forest (RF) algorithm was developed to retrieve SSM using Landsat data in conjunction with in situ measurements. The results demonstrated that the RF algorithm achieved a high coefficient of determination ( R2=0.80\text{R}^{2}=0.80 ) for the SSM retrieval. The study area exhibited distinct distributions of SSM and normalized difference vegetation index (NDVI) values across different ranges. The low range of SSM (2.21%–3.34%) and NDVI (−0.020–0.172) values occupied approximately 25% of the soil area, whereas the moderate range of SSM (3.34%–4.05%) and NDVI (0.172–0.238) values covered approximately 50% of the soil area. A high range of SSM (4.05%–6.49%) and NDVI (0.238–0.935) values was found in approximately 25% of the region. The southern part of Batifa experienced drought conditions, whereas the northern part exhibited higher SSM levels. Anthropogenic resources caused a decrease in vegetation and SSM in Batifa. These findings have significant implications for sustainable management of water and soil resources in the Batifa area

    A simple in silico approach to generate gene-expression profiles from subsets of cancer genomics data

    No full text
    In biomedical research, large-scale profiling of gene expression has become routine and offers a valuable means to evaluate changes in onset and progression of diseases, in particular cancer. An overwhelming amount of cancer genomics data has become publicly available, and the complexity of these data makes it a challenge to perform in silico data exploration, integration and analysis, in particular for scientists lacking a background in computational programming or informatics. Many web interface tools make these large datasets accessible but are limited to process large datasets. To accelerate the translation of genomic data into new insights, we provide a simple method to explore and select data from cancer genomic datasets to generate gene-expression profiles of subsets that are of specific genetic, biological or clinical interest

    A simple in silico

    No full text

    Metabolic mapping: Quantitative enzyme cytochemistry and histochemistry to determine the activity of dehydrogenases in cells and tissues

    No full text
    Altered cellular metabolism is a hallmark of many diseases, including cancer, cardiovascular diseases and infection. The metabolic motor units of cells are enzymes and their activity is heavily regulated at many levels, including the transcriptional, mRNA stability, translational, post-translational and functional level. This complex regulation means that conventional quantitative or imaging assays, such as quantitative mRNA experiments, Western Blots and immunohistochemistry, yield incomplete information regarding the ultimate activity of enzymes, their function and/or their subcellular localization. Quantitative enzyme cytochemistry and histochemistry (i.e., metabolic mapping) show in-depth information on in situ enzymatic activity and its kinetics, function and subcellular localization in an almost true-to-nature situation. We describe a protocol to detect the activity of dehydrogenases, which are enzymes that perform redox reactions to reduce cofactors such as NAD(P)+ and FAD. Cells and tissue sections are incubated in a medium that is specific for the enzymatic activity of one dehydrogenase. Subsequently, the dehydrogenase that is the subject of investigation performs its enzymatic activity in its subcellular site. In a chemical reaction with the reaction medium, this ultimately generates blue-colored formazan at the site of the dehydrogenase's activity. The formazan's absorbance is therefore a direct measure of the dehydrogenase's activity and can be quantified using monochromatic light microscopy and image analysis. The quantitative aspect of this protocol enables researchers to draw statistical conclusions from these assays. Besides observational studies, this technique can be used for inhibition studies of specific enzymes. In this context, studies benefit from the true-to-nature advantages of metabolic mapping, giving in situ results that may be physiologically more relevant than in vitro enzyme inhibition studies. In all, metabolic mapping is an indispensable technique to study metabolism at the cellular or tissue level. The technique is easy to adopt, provides in-depth, comprehensive and integrated metabolic information and enables rapid quantitative analysis

    Fault Detection for Automotive Coil Spring Using Signal Processing Analysis

    No full text
    Shock absorber failure can be easily detected during shock absorber utilization in the vehicle. The failure usually happened due to crack propagation under fatigue life of compress and extend operation. To prevent any failures during utilization it is preemptive to detect any possible fault during manufacturing quality check inspection process. However, it is very difficult to do full check to all finished product due to high time consumption they require. In order to shorten the time, automated checking method are desire. In this study, automotive coil spring health are recognized using signal processing analysis to enable automated line quality check inspection. Fatigue testing machine was use to excite the spring in order to create signal needed in the processing analysis. The analysis was carried out using excitation signal detected along cycle time. Output data for both healthy and faulted springs (pre-inserted cracked) were processed and compared using signal processing analysis. This method shown an accurate consistency for fault detection of crack occurred in automotive spring where the number of peaks and valley of the signal as well as their maximum values not only able to show defective characteristics but also the severity degree of the defect where higher number and frequency density are more severe than not. This method will definitely able to shorten time needed for quality check inspection of cracks when applied in fabrication line compared to conventional method using naked eyes where micro cracks are very hard to detect

    Hyperthermia as a Potential Cornerstone of Effective Multimodality Treatment with Radiotherapy, Cisplatin and PARP Inhibitor in IDH1-Mutated Cancer Cells

    No full text
    Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and >80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these types of cancer due to neomorphic production of the oncometabolite D-2-hydroxyglutarate (D-2HG). Intracellular accumulation of D-2HG has been implicated in suppressing homologous recombination and renders IDH1MUT cancer cells sensitive to DNA-repair-inhibiting agents, such as poly-(adenosine 5′-diphosphate–ribose) polymerase inhibitors (PARPi). Hyperthermia increases the efficacy of DNA-damaging therapies such as radiotherapy and platinum-based chemotherapy, mainly by inhibition of DNA repair. In the current study, we investigated the additional effects of hyperthermia (42 °C for 1 h) in the treatment of IDH1MUT HCT116 colon cancer cells and hyperthermia1080 chondrosarcoma cancer cells in combination with radiation, cisplatin and/or a PARPi on clonogenic cell survival, cell cycle distribution and the induction and repair of DNA double-strand breaks. We found that hyperthermia in combination with radiation or cisplatin induces an increase in double-strand breaks and cell death, up to 10-fold in IDH1MUT cancer cells compared to IDH1 wild-type cells. This vulnerability was abolished by the IDH1MUT inhibitor AGI-5198 and was further increased by the PARPi. In conclusion, our study shows that IDH1MUT cancer cells are sensitized to hyperthermia in combination with irradiation or cisplatin and a PARPi. Therefore, hyperthermia may be an efficacious sensitizer to cytotoxic therapies in tumors where the clinical application of hyperthermia is feasible, such as IDH1MUT chondrosarcoma of the extremities

    Hyperthermia as a Potential Cornerstone of Effective Multimodality Treatment with Radiotherapy, Cisplatin and PARP Inhibitor in IDH1-Mutated Cancer Cells

    No full text
    Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and >80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these types of cancer due to neomorphic production of the oncometabolite D-2-hydroxyglutarate (D-2HG). Intracellular accumulation of D-2HG has been implicated in suppressing homologous recombination and renders IDH1MUT cancer cells sensitive to DNA-repair-inhibiting agents, such as poly-(adenosine 5′-diphosphate–ribose) polymerase inhibitors (PARPi). Hyperthermia increases the efficacy of DNA-damaging therapies such as radiotherapy and platinum-based chemotherapy, mainly by inhibition of DNA repair. In the current study, we investigated the additional effects of hyperthermia (42 °C for 1 h) in the treatment of IDH1MUT HCT116 colon cancer cells and hyperthermia1080 chondrosarcoma cancer cells in combination with radiation, cisplatin and/or a PARPi on clonogenic cell survival, cell cycle distribution and the induction and repair of DNA double-strand breaks. We found that hyperthermia in combination with radiation or cisplatin induces an increase in double-strand breaks and cell death, up to 10-fold in IDH1MUT cancer cells compared to IDH1 wild-type cells. This vulnerability was abolished by the IDH1MUT inhibitor AGI-5198 and was further increased by the PARPi. In conclusion, our study shows that IDH1MUT cancer cells are sensitized to hyperthermia in combination with irradiation or cisplatin and a PARPi. Therefore, hyperthermia may be an efficacious sensitizer to cytotoxic therapies in tumors where the clinical application of hyperthermia is feasible, such as IDH1MUT chondrosarcoma of the extremities
    corecore