11 research outputs found

    The phenotype, genotype, and outcome of infantile-onset Pompe disease in 18 Saudi patients

    No full text
    Infantile-Onset Pompe Disease (IOPD) is an autosomal recessive disorder of glycogen metabolism resulting from deficiency of the lysosomal hydrolase acid α-glucosidase encoded by GAA gene. Affected infants present before the age of 12 months with hypotonia, muscle weakness, and hypertrophic cardiomyopathy. Enzyme replacement therapy (ERT) has been shown to improve survival, cardiac mass, and motor skills. In this work, we aim to illustrate the genotypes of IOPD and the outcome of ERT in our population. The medical records of infants with confirmed diagnosis of IOPD who received ERT were reviewed. Eighteen infants (7 males, 11 females) were included in the study. The median age at presentation was 2 months and the median age at the start of ERT was 4.5 months. Fifteen (83.3%) infants died with a median age at death of 12 months. The 3 alive infants (whose current ages are 6½ years, 6 years, and 10 years), who were initiated on ERT at the age of 3 weeks, 5 months, and 8 months respectively, has had variable response with requirement of assisted ventilation in one child and tracheostomy in another child. All infants were homozygous for GAA mutations except one infant who was compound heterozygous. All infants (n = 8) with truncating mutations died. Our work provides insight into the correlation of genotypes and outcome of ERT in IOPD in Saudi Arabia. Our data suggest that early detection of cases, through newborn screening, and immunomodulation before the initiation of ERT may improve the outcome of ERT in Saudi infants with IOPD. Keywords: Pompe disease, Glycogen storage disease type II, Enzyme replacement therapy, GA

    Leprel1-related Giant Retinal Tear Detachments Mimic the Phenotype of Ocular Stickler Syndrome

    No full text
    Purpose:To describe the features of retinal detachments and high myopia in patients with novel pathogenic variants in LEPREL1 and report a possible association with nephropathy.Methods:Retrospective study of 10 children with biallelic LEPREL1 pathogenic variants. Data included ophthalmic features, surgical interventions, and genetic and laboratory findings.Results:10 patients (8 females) from three families with homozygous (2) or compound heterozygous (1) variants in LEPREL1 were included. At presentation, mean age was 9.9 ± 2.6 years. Mean axial length was 28.9 ± 1.9 mm and mean refraction was -13.9 ± 2.8 diopters. Bilateral posterior subcapsular cataracts were present in eight patients (80%), with lens subluxation in five eyes of three patients (30%). Rhegmatogenous retinal detachments (RRD), associated with giant retinal tears (GRT), developed in seven eyes of five patients (50%) at a mean age of 14.14 ± 5.9 years. Six were successfully reattached with mean Snellen best-corrected visual acuity improving from 20/120 preoperatively to 20/60 at last follow-up. Urinalysis in nine patients revealed microhematuria and/or mild proteinuria in six patients (67%).Conclusion:LEPREL1-related high myopia confers a high risk of early-onset GRT-related RRD. The ocular phenotype may be confused with that of ocular Stickler syndrome if genetic testing is not performed. Further investigations into a potential association with renal dysfunction are warranted

    Validation of Ion TorrentTM Inherited Disease Panel with the PGMTM Sequencing Platform for Rapid and Comprehensive Mutation Detection

    No full text
    Quick and accurate molecular testing is necessary for the better management of many inherited diseases. Recent technological advances in various next generation sequencing (NGS) platforms, such as target panel-based sequencing, has enabled comprehensive, quick, and precise interrogation of many genetic variations. As a result, these technologies have become a valuable tool for gene discovery and for clinical diagnostics. The AmpliSeq Inherited Disease Panel (IDP) consists of 328 genes underlying more than 700 inherited diseases. Here, we aimed to assess the performance of the IDP as a sensitive and rapid comprehensive gene panel testing. A total of 88 patients with inherited diseases and causal mutations that were previously identified by Sanger sequencing were randomly selected for assessing the performance of the IDP. The IDP successfully detected 93.1% of the mutations in our validation cohort, achieving high overall gene coverage (98%). The sensitivity for detecting single nucleotide variants (SNVs) and short Indels was 97.3% and 69.2%, respectively. IDP, when coupled with Ion Torrent Personal Genome Machine (PGM), delivers comprehensive and rapid sequencing for genes that are responsible for various inherited diseases. Our validation results suggest the suitability of this panel for use as a first-line screening test after applying the necessary clinical validation

    Novel biallelic variants expand the phenotype of NAA20-related syndrome

    No full text
    : NAA20 is the catalytic subunit of the NatB complex, which is responsible for N-terminal acetylation of approximately 20% of the human proteome. Recently, pathogenic biallelic variants in NAA20 were associated with a novel neurodevelopmental disorder in five individuals with limited clinical information. We report two sisters harboring compound heterozygous variant (c.100C>T (p.Gln34Ter) and c.11T>C p.(Leu4Pro)) in the NAA20 gene, identified by exome sequencing. In vitro studies showed that the missense variant p.Leu4Pro resulted in a reduction of NAA20 catalytic activity due to weak coupling with the NatB auxiliary subunit. In addition, unpublished data of the previous families were reported, outlining the core phenotype of the NAA20-related disorder mostly characterized by cognitive impairment, microcephaly, ataxia, brain malformations, dysmorphism and variable occurrence of cardiac defect and epilepsy. Remarkably, our two patients featured epilepsy onset in adolescence suggesting this may be a part of syndrome evolution. Functional studies are needed to better understand the complexity of NAA20 variants pathogenesis as well as of other genes linked to N-terminal acetylation

    Katanin p80 Regulates Human Cortical Development by Limiting Centriole and Cilia Number

    Get PDF
    Katanin is a microtubule-severing complex whose catalytic activities are well characterized, but whose in vivo functions are incompletely understood. Human mutations in KATNB1, which encodes the noncatalytic regulatory p80 subunit of katanin, cause severe microlissencephaly. Loss of Katnb1 in mice confirms essential roles in neurogenesis and cell survival, while loss of zebrafish katnb1 reveals specific roles for katnin p80 in early and late developmental stages. Surprisingly, Katnb1 null mutant mouse embryos display hallmarks of aberrant Sonic hedgehog signaling, including holoprosencephaly. KATNB1-deficient human cells show defective proliferation and spindle structure, while Katnb1 null fibroblasts also demonstrate a remarkable excess of centrioles, with supernumerary cilia but deficient Hedgehog signaling. Our results reveal unexpected functions for KATNB1 in regulating overall centriole, mother centriole, and cilia number, and as an essential gene for normal Hedgehog signaling during neocortical developmen

    A Novel Homozygous Founder Variant of RTN4IP1 in Two Consanguineous Saudi Families

    No full text
    The genetic architecture of mitochondrial disease continues to expand and currently exceeds more than 350 disease-causing genes. Bi-allelic variants in RTN4IP1, also known as Optic Atrophy-10 (OPA10), lead to early-onset recessive optic neuropathy, atrophy, and encephalopathy in the afflicted patients. The gene is known to encode a mitochondrial ubiquinol oxidoreductase that interacts with reticulon 4 and is thought to be a mitochondrial antioxidant NADPH oxidoreductase. Here, we describe two unrelated consanguineous families from the northern region of Saudi Arabia harboring a missense variant (RTN4IP1:NM_032730.5; c.475G<T, p.Val159Phe) in the gene. Clinically affected individuals presented with intellectual disability, encephalopathy, ataxia, optic atrophy, and seizures. Based on whole exome sequencing and confirmatory Sanger sequencing, the variant was fully segregated with the phenotype in the families, absent among large ethnically matching controls as well as numerous in-house exomes, and predicted to be pathogenic by different in silico classifiers. Structural modeling and immunoblot analyses strongly indicated this variant to be pathogenic. Since the families belong to one of the tribal inhabitants of Saudi Arabia, we postulate that the variant is likely to be a founder. We provide the estimated age of the variant and present data confirming the disease-causality of this founder variant

    Lessons Learned from Large-Scale, First-Tier Clinical Exome Sequencing in a Highly Consanguineous Population

    No full text
    corecore