3 research outputs found
Investigating Fourteen Countries to Maximum the Economy Benefit by Using Offline Reconfiguration for Medium Scale PV Array Arrangements
Over the past few years, electricity demand has been on the rise. This has resulted in renewable energy resources being used rapidly, considering the shortage as well as the environmental impacts of fossil fuel. A renewable energy source that has become increasingly popular is photovoltaic (PV) energy as it is environmentally friendly. Installing PV modules, however, has to ensure harsh environments including temperature, dust, birds drop, hotspot, and storm. Thus, the phenomena of the non-uniform aging of PV modules has become unavoidable, negatively affecting the performance of PV plants, particularly during the middle and latter duration of their service life. The idea here is to decrease the capital of maintenance and operation costs involved in medium-and large-scale PV power plants and improving the power efficiency. Hence, the present paper generated an offline PV module reconfiguration strategy considering the non-uniform aging PV array to ensure that this effect is mitigated and does not need extra sensors. To enhance the economic benefit, the offline reconfiguration takes into account labor cost and electricity price. This paper proposes a gene evolution algorithm (GEA) for determining the highest economic benefit. The proposed algorithm was verified using MATLAB software-based modeling and simulations to investigate fourteen countries to maximize the economic benefit that employed a representative 18-kW and 43-kW output and the power of 10 × 10 PV arrays in connection as a testing benchmark and considered the electricity price and workforce cost. According to the results, enhanced power output can be generated from a non-uniformly aged PV array of any size, and offers the minimum swapping/replacing times to maximize the output power and improve the electric revenue by reducing the maintenance costs
Effect of Heat Source Position in Fluid Flow, Heat Transfer and Entropy Generation in a Naturally Ventilated Room
In this study, a 3D numerical study of free ventilated room equipped with a discrete heat source was performed using the Finite Volume Method (FVM). To ensure good ventilation, two parallel openings were created in the room. A suction opening was located at the bottom of the left wall and another opening was located at the top of the opposite wall; the heat source was placed at various positions in order to compare the heating efficiency. The effects of Rayleigh number (103 ≤ Ra ≤ 106) for six heater positions was studied. The results focus on the impact of these parameters on the particle trajectories, temperature fields and on the heat transfer inside the room. It was found that the position of the heater has a dramatic effect on the behavior and topography of the flow in the room. When the heat source was placed on the wall with the suction opening, two antagonistic behaviors were recorded: an improvement in heat transfer of about 31.6%, compared to the other positions, and a low Rayleigh number against 22% attenuation for high Ra values was noted
Development of a Mosque Design for a Hot, Dry Climate Based on a Holistic Bioclimatic Vision
Over 50% of the total energy consumed by buildings in a hot and dry climate goes toward the cooling regime during the harsh months. Non-residential buildings, especially houses of worship, need a tremendous amount of energy to create a comfortable environment for worshipers. Today, mosques are regarded as energy-hungry buildings, whereas in the past, they were designed according to sustainable vernacular architecture. This study was aimed at improving the energy performance of mosques in a hot and dry climate using bioclimatic principles and architectural elements. To achieve this aim, a process-based simulation approach was applied together with a generate and test technique on 86 scenarios based on 10 architectural elements, with various arithmetic transition rates organized in 9 successive steps. Starting from a simplified hypothetical model, the final model of the mosque design was arrived at based on a holistic bioclimatic vision using 10 architectural elements. The findings of this research were limited to a specific mosque size in a hot and dry climate, but the proposed holistic bioclimatic concept can be developed to take into account all mosque models in several harsh environments