18 research outputs found
Study the Efficiency of Two Concentrations from Algae Cladophora glomerata Extract on the Giardia lamblia parasite
خلال الدراسة الحالية تم عزل طفيلي Giardia lamblia من عينات البراز لمرضى مصابين باسهال Giardiasis حيث تم عزل الطفيلي و تنميته باستخدام وسط HSP . استعان الباحثون بفئران تجريبيه بواقع اربع مجاميع من الفئران وذلك لتقييم فعالية تركيزين (128,256)ملغم /مل من مستخلص كلوروفورم للطحالب الخضراء Cladophora glomerata ضد الطفيلي المعزول ومقارنة بالعلاج التجاري للطفيلي) (Flagyl وذلك بقياس بعض المؤشرات مثل انزيمات الكبد GPTand GOT)) , مستوى تراكيز الصوديوم والبوتاسيوم والحديد بالدم اضافة الى تعداد اكياس الطفيلي لبراز كل مجموعة من مجاميع الفئران المستخدمة خلال التجربة , اظهرت النتائج انحدار في مستويات انزيمات الكبد بعد معالجة الفئران المصابة بالطفيلي بمستخلص الطحالب. بينما اشرت قياسات مستوى الصوديوم والبوتاسيوم و الحديد زيادة بعد العلاج بمستخلص الطحلب .وبالنسبة لتعداد اكياس الطفيلي فقد قل تعدادها في براز الفئران المصابة بعد تجريعها فمويا بمستخلص الطحلب مقارنة بالعلاج التجاري .واخيرا تم الكشف عن المركبات الفعالة في مستخلص الطحالب المدروسة باجراء فحص GC-Mass حيث اظهرت نتائج الفحص وجود العديد من المركبات ذات فعالية بايولوجية متنوعة . تعتبر هذه الدراسة الاولى على مستوى العالم لبيان امكانية استخدام المركبات الفعالة بايولوجيا الموجوده في طحلب Cladophora glomerata كعلاج مناسب وبديل عن العلاج المصنع للقضاء على اصابات الطفيلي Giardia.Giardia lamblia parasite was isolated from the diarrhea samples of patients with Giardiasis dysentery and was developed in HSP media, four mice groups have been used to find in vivo efficacy of two concentrations (128,256) mg/ml of chlorophorm extracts from Cladophora glomerata algae against Giardia lamblia parasite as compared with (Flagyl) by measuring several biochemical markers as ( GPT and GOT) enzymes ,sodium ,potassium and iron concentration as well as counting the number of parasitic cysts in each mice groups. The results demonstrate that levels of GPTA GOT enzymes have been decreased in mice treated with algal extract. As for the concentration of the Sodium, Potassium and Iron increased in mice treated with algal extract. The number of the Giardia cyst is also reduced in orally inoculated mice with both concentrations of algal extract as compared with positive control and the Flagyl treated group. In terms of bioactive compounds, GC-Mass results indicate the presence of many phytochemicals with different biologically active properties This study represents the first attempt to use Cladophora glomerata derived from phytochemicals to treat giardiasis in vivo
COMPARISON PHYTOCHEMICAL COMPOUNDS FROM TWO DIFFERENT SOLVENTS OF CRUDE CAPPARIS SPINOSA EXTRACTS
An experiment was conducted to evaluate different parts of the plant Capparis spinosa L. extracts for their phytochemical compounds by two different solvents (ethanol &hexane) . The current results showed the superiority of the ethanolic extracts by their quantity and quality of active compounds compared to the hexane extracts. The yield percentage of ethanolic Capparis spinosa L extracts ranges between (3-31%), and color range between Dark brown, and olive with oily texture. Whereas, the yield of the hexane extract ranges between (1-27.9%) and it takes a longer time for extract with difficult to obtain, Ultimately, the results of the phytochemical analysis demonstrated the presence of numerous active compounds with higher degree of the sediment color in ethanol extracts such as: alkaloids, Phenols, Glycosides, Tannins, flavonoids and Saponin comparing with hexane extracts with lower color strength
Fabrication of highly photostable polystyrene films embedded with organometallic complexes
Polystyrene is a common thermoplastic and is produced in different shapes and forms. The scale of manufacture of polystyrene has grown over the years because of its numerous applications and low cost of production. However, it is flammable, brittle, has low resistance to chemicals, and is susceptible to photodegradation on exposure to ultraviolet radiation. There is therefore scope to improve the properties of polystyrene and to extend its useful lifetime. The current work reports the synthesis of organometallic complexes and investigates their use as photostabilizers for polystyrene. The reaction of excess ibuprofen sodium salt and appropriate metal chlorides in boiling methanol gave the corresponding complexes excellent yields. The organometallic complexes (0.5% by weight) were added to polystyrene and homogenous thin films were made. The polystyrene films blended with metal complexes were irradiated with ultraviolet light for extended periods of time and the stabilizing effects of the additives were assessed. The infrared spectroscopy, weight loss, depression in molecular weight, and surface morphology of the irradiated blends containing organometallic complexes were investigated. All the synthesized organometallic complexes acted as photostabilizers for polystyrene. The damage (e.g., formation of small polymeric fragments, decrease in weight and molecular weight, and irregularities in the surface) that took place in the polystyrene blends was much lower in comparison to the pure polystyrene film. The manganese-containing complex was very effective in stabilizing polystyrene and was superior to cobalt and nickel complexe
Synthesis of new Norfloxacin-Tin complexes to mitigate the effect of ultraviolet-visible irradiation in polyvinyl chloride films
Polyvinyl chloride is used in the manufacturing of a wide range of products, but it is susceptible to degradation if exposed to high temperatures and sunlight. There is therefore a need to continuously explore the design, synthesis, and application of new and improved additives to reduce the photodegradation of polyvinyl chloride in harsh environments and for outdoor applications. This research investigates the use of new norfloxacin–tin complexes as additives to inhibit the photodegradation of polyvinyl chloride to make it last longer. Reactions between norfloxacin and substituted tin chlorides, in different molar ratios and in methanol under reflux conditions, gave the corresponding organotin complexes in high yields. The chemical structures of the synthesized complexes were established, and their effect on the photodegradation of polyvinyl chloride due to ultraviolet-visible irradiation was investigated. Norfloxacin–tin complexes were added to polyvinyl chloride at very low concentrations and homogenous thin films were made. The films were irradiated for a period of up to 300 h, and the damage that occurred was assessed using infrared spectroscopy, polymeric materials weight loss, depression in molecular weight, and surface inspection. The degree of photodegradation in the polymeric materials was much less in the blends containing norfloxacin–tin complexes compared to the case where no additives were used. The use of the additives leads to a reduction in photodegradation (e.g., a reduction in the formation of short-chain polymeric fragments, weight loss, average molecular weight depletion, and roughness factor) of irradiated polyvinyl chloride. The norfloxacin–tin complexes contain aromatic moieties (aryl and heterocycle), heteroatoms (nitrogen, oxygen, and fluorine), and an acidic center (tin atom). Therefore, they act as efficient photostabilizers by absorbing the ultraviolet radiation and scavenging hydrogen chloride, peroxides, and radical species, thereby slowing the photodegradation of polyvinyl chloride
COVID-19 Vaccination Among Diverse Population Groups in the Northern Governorates of Iraq
Objectives: The present study was carried out to investigate COVID-19 vaccination coverage among populations of internally displaced persons (IDPs), refugees, and host communities in northern Iraq and the related underlying factors.Methods: Through a cross-sectional study conducted in five governorates in April–May 2022, 4,564 individuals were surveyed. Data were collected through an adapted questionnaire designed to gather data on participants.Results: 4,564 subjects were included (59.55% were 19–45 years old; 54.51% male). 50.48% of the participants (51.49% of host communities, 48.83% of IDPs, and 45.87% of refugees) had been vaccinated with at least one dose of COVID-19 vaccine. 40.84% of participants (42.28% of host communities, 35.75% of IDPs, and 36.14% of refugees) had been vaccinated by two doses, and 1.56% (1.65% of host communities, 0.93% of IDPs, and 1.46% of refugees) were vaccinated with three doses.Conclusion: Sociodemographic factors including age, gender, education, occupation, and nationality could affect vaccination coverage. Moreover, higher acceptance rate of vaccination is associated with belief in vaccine safety and effectiveness and trust in the ability of the vaccine to prevent complications
Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries
Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
A Surface Morphological Study, Poly(Vinyl Chloride) Photo-Stabilizers Utilizing Ibuprofen Tin Complexes against Ultraviolet Radiation
In this work, three Ibuprofen tin complexes were synthesized and characterized by Fourier Transform Infrared spectroscopy (FTIR), 1H and 119Sn-Nuclear Magnetic Resonance (NMR), and Energy Dispersive X-ray (EDX) spectroscopies to identify the structures. The complexes were mixed separately with poly(vinyl chloride) (PVC) to improve its photo-stability properties. Their activity was demonstrated by several approaches of the FTIR to exhibit the formation of new groups within the polymer structure due to the exposure to UV light. Moreover, the polymer’s weight loss during irradiation and the average molecular weight estimation using its viscosity before and after irradiation were investigated. Furthermore, different techniques were used to study the surface morphology of the PVC before and after irradiation. Field-emission scanning electron microscopy (FESEM) and optical microscope demonstrated that applying Ibuprofen tin complexes keeps the surface of PVC smoother, with fewer cracks and spots after irradiation comparing to the blank PVC. Finally, It seems possible that such synthesized Ibuprofen tin complexes can work as excellent photo-stabilizers of PVC. In particular, complex 1 showed the best results among other stabilizers due to the large conjugation system of the stabilizer
Silicon-carbide (SiC) nanocrystal as technology and characterization and its applications in photo-stabilizers of Teflon
Polytetrafluoroethylene (PTFE) was mixed with silicon carbide nanoparticles in various quantities to create thin films. Long-term UV light exposure to the PTFE films was used to study the effects of SiC NPs as a photo-stabilizer by assessing changes in weight loss and surface shape. Comparing PTFE films with various SiC NP concentrations to the blank film, very little variation was seen. AFM and optical microscopy were also used to analyze the surface morphology of films. When PTFE films with additives were compared to blank film, there were hard to observe any negative changes brought due to photo-degradation. Additionally, the surfaces appeared more uniformly smooth hence SiC NPs work well as photo-stabilizers to impede photo-degradation, particularly 0.0005 gm weight. Silicon carbide nanoparticles absorb ultraviolet light, bind polymeric chains, scavenge radical moieties, and degrade peroxide residues
Utilization of Metal Oxides Nanoparticles in Modulating Polyvinyl Chloride Films to Resist Ultraviolet Light
Modified poly(vinyl chloride) (PVC) films with organic groups (amino group from ethylene di-amine (en) and a suitable aromatic aldehyde from benzaldehyde (BEN)) were synthesized by casting using tetrahydrofuran (THF) solvent. The films were doped with four metal oxides nanoparticles (NPs), namely: CuO, Cr2O3, TiO2, and Co2O3, to improve the anti-photodegradation property. The films were irradiated with ultraviolet light and the resulting damage was assessed using different analytical and morphological techniques. These techniques included FTIR, 1H-NMR, and 13C-NMR spectroscopies that were used to examine the chemical structure, while another set of devices, namely optical microscope, scanning electronic microscopy (SEM), and atomic force microscope (AFM) were used to examine the morphology. In order to confirm that modified PVC acts as PVC photostabilizers, the roughness factor (Rq) was measured for the irradiated PVC films. The average Rq for irradiated blank PVC, modified PVC, modified PVC/CuO NPs, modified PVC/TiO2 NPs, modified PVC/Co2O3 NPs, and modified PVC/Cr2O3 NPs films were 368.3, 76.1, 62.6, 53.2, 45.8, and 33.8, respectively. Infrared spectroscopy and weight loss determination indicated that the films incorporated with additives showed less damage and fewer surface changes compared to the blank film. All mentioned additives acted as UV screeners against the UV light. The modified PVC/Cr2O3 NPs film showed the highest ability to resist the photo-degradation process based on the results data of FTIR spectra, weight loss, and surface morphology. In addition, after 300 h of irradiation, the weight percentage of modified PVC/Cr2O3 NPs film was 0.911 in contrast to the blank PVC, 2.896. Among the tested films, modified PVC/Cr2O3 NPs film showed the best results
Utilization of Metal Oxides Nanoparticles in Modulating Polyvinyl Chloride Films to Resist Ultraviolet Light
Modified poly(vinyl chloride) (PVC) films with organic groups (amino group from ethylene di-amine (en) and a suitable aromatic aldehyde from benzaldehyde (BEN)) were synthesized by casting using tetrahydrofuran (THF) solvent. The films were doped with four metal oxides nanoparticles (NPs), namely: CuO, Cr2O3, TiO2, and Co2O3, to improve the anti-photodegradation property. The films were irradiated with ultraviolet light and the resulting damage was assessed using different analytical and morphological techniques. These techniques included FTIR, 1H-NMR, and 13C-NMR spectroscopies that were used to examine the chemical structure, while another set of devices, namely optical microscope, scanning electronic microscopy (SEM), and atomic force microscope (AFM) were used to examine the morphology. In order to confirm that modified PVC acts as PVC photostabilizers, the roughness factor (Rq) was measured for the irradiated PVC films. The average Rq for irradiated blank PVC, modified PVC, modified PVC/CuO NPs, modified PVC/TiO2 NPs, modified PVC/Co2O3 NPs, and modified PVC/Cr2O3 NPs films were 368.3, 76.1, 62.6, 53.2, 45.8, and 33.8, respectively. Infrared spectroscopy and weight loss determination indicated that the films incorporated with additives showed less damage and fewer surface changes compared to the blank film. All mentioned additives acted as UV screeners against the UV light. The modified PVC/Cr2O3 NPs film showed the highest ability to resist the photo-degradation process based on the results data of FTIR spectra, weight loss, and surface morphology. In addition, after 300 h of irradiation, the weight percentage of modified PVC/Cr2O3 NPs film was 0.911 in contrast to the blank PVC, 2.896. Among the tested films, modified PVC/Cr2O3 NPs film showed the best results