15 research outputs found

    Minimising the heat dissipation of quantum information erasure

    Full text link
    Quantum state engineering and quantum computation rely on information erasure procedures that, up to some fidelity, prepare a quantum object in a pure state. Such processes occur within Landauer's framework if they rely on an interaction between the object and a thermal reservoir. Landauer's principle dictates that this must dissipate a minimum quantity of heat, proportional to the entropy reduction that is incurred by the object, to the thermal reservoir. However, this lower bound is only reachable for some specific physical situations, and it is not necessarily achievable for any given reservoir. The main task of our work can be stated as the minimisation of heat dissipation given probabilistic information erasure, i.e., minimising the amount of energy transferred to the thermal reservoir as heat if we require that the probability of preparing the object in a specific pure state φ1|\varphi_1\rangle be no smaller than pφ1maxδp_{\varphi_1}^{\max}-\delta. Here pφ1maxp_{\varphi_1}^{\max} is the maximum probability of information erasure that is permissible by the physical context, and δ0\delta\geqslant 0 the error. To determine the achievable minimal heat dissipation of quantum information erasure within a given physical context, we explicitly optimise over all possible unitary operators that act on the composite system of object and reservoir. Specifically, we characterise the equivalence class of such optimal unitary operators, using tools from majorisation theory, when we are restricted to finite-dimensional Hilbert spaces. Furthermore, we discuss how pure state preparation processes could be achieved with a smaller heat cost than Landauer's limit, by operating outside of Landauer's framework

    Low-control and robust quantum refrigerator and applications with electronic spins in diamond

    Get PDF
    We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the zz-direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics

    Universal validity of the second law of information thermodynamics

    Full text link
    Feedback control and erasure protocols have often been considered as a model to embody Maxwell's Demon paradox and to study the interplay between thermodynamics and information processing. Such studies have led to the conclusion, now widely accepted in the community, that Maxwell's Demon and the second law of thermodynamics can peacefully coexist because any gain provided by the demon must be offset by the cost of performing measurement and resetting the demon's memory to its initial state. Statements of this kind are collectively referred to as second laws of information thermodynamics and have recently been extended to include quantum theoretical scenarios. However, previous studies in this direction have made several assumptions, in particular about the feedback process and the measurement performed on the demon's memory, and thus arrived at statements that are not universally applicable and whose range of validity is not clear. In this work, we fill this gap by precisely characterizing the full range of quantum feedback control and erasure protocols that are overall consistent with the second law of thermodynamics. This leads us to conclude that the second law of information thermodynamics is indeed universal: it must hold for any quantum feedback control and erasure protocol, regardless of the measurement process involved, as long as the protocol is overall compatible with thermodynamics. Our comprehensive analysis not only encompasses new scenarios but also retrieves previous ones, doing so with fewer assumptions. This simplification contributes to a clearer understanding of the theory. Additionally, our work identifies the Groenewold--Ozawa information gain as the correct information measure characterizing the work extractable by feedback control.Comment: 30 pages, 1 figure. The title is changed from the previous version and one author is added. The contents are significantly update

    Thermodynamic uncertainty relation in slowly driven quantum heat engines

    Get PDF
    Thermodynamic Uncertainty Relations express a trade-off between precision, defined as the noise-to-signal ratio of a generic current, and the amount of associated entropy production. These results have deep consequences for autonomous heat engines operating at steady-state, imposing an upper bound for their efficiency in terms of the power yield and its fluctuations. In the present manuscript we analyse a different class of heat engines, namely those which are operating in the periodic slow-driving regime. We show that an alternative TUR is satisfied, which is less restrictive than that of steady-state engines: it allows for engines that produce finite power, with small power fluctuations, to operate close to the Carnot efficiency. The bound further incorporates the effect of quantum fluctuations, which reduces engine efficiency relative to the average power and reliability. We finally illustrate our findings in the experimentally relevant model of a single-ion heat engine.Comment: 11 pages, 2 figures. Updated to published version with additional mathematical background in the supplementary material. Some additional results from a previous draft have now been incorporated into another article, see arXiv:2011.1158

    Quantum control of hybrid nuclear-electronic qubits

    Full text link
    Pulsed magnetic resonance is a wide-reaching technology allowing the quantum state of electronic and nuclear spins to be controlled on the timescale of nanoseconds and microseconds respectively. The time required to flip either dilute electronic or nuclear spins is orders of magnitude shorter than their decoherence times, leading to several schemes for quantum information processing with spin qubits. We investigate instead the novel regime where the eigenstates approximate 50:50 superpositions of the electronic and nuclear spin states forming "hybrid nuclear-electronic" qubits. Here we demonstrate quantum control of these states for the first time, using bismuth-doped silicon, in just 32 ns: this is orders of magnitude faster than previous experiments where pure nuclear states were used. The coherence times of our states are five orders of magnitude longer, reaching 4 ms, and are limited by the naturally-occurring 29Si nuclear spin impurities. There is quantitative agreement between our experiments and no-free-parameter analytical theory for the resonance positions, as well as their relative intensities and relative Rabi oscillation frequencies. In experiments where the slow manipulation of some of the qubits is the rate limiting step, quantum computations would benefit from faster operation in the hybrid regime.Comment: 20 pages, 8 figures, new data and simulation

    Thermodynamically free quantum measurements

    Full text link
    Thermal channels -- the free processes allowed in the resource theory of quantum thermodynamics -- are generalised to thermal instruments, which we interpret as implementing thermodynamically free quantum measurements; a Maxwellian demon using such measurements never violates the second law of thermodynamics. The properties of thermal instruments are investigated and, in particular, it is shown that they only measure observables commuting with the Hamiltonian, and they thermalise the measured system when performing a complete measurement, the latter of which indicates a thermodynamically induced information-disturbance trade-off. The demarcation of measurements that are not thermodynamically free paves the way for a resource-theoretic quantification for the thermodynamic cost of quantum measurements
    corecore