11,252 research outputs found

    Decentralized Control of Partially Observable Markov Decision Processes using Belief Space Macro-actions

    Get PDF
    The focus of this paper is on solving multi-robot planning problems in continuous spaces with partial observability. Decentralized partially observable Markov decision processes (Dec-POMDPs) are general models for multi-robot coordination problems, but representing and solving Dec-POMDPs is often intractable for large problems. To allow for a high-level representation that is natural for multi-robot problems and scalable to large discrete and continuous problems, this paper extends the Dec-POMDP model to the decentralized partially observable semi-Markov decision process (Dec-POSMDP). The Dec-POSMDP formulation allows asynchronous decision-making by the robots, which is crucial in multi-robot domains. We also present an algorithm for solving this Dec-POSMDP which is much more scalable than previous methods since it can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed method's performance is evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent multi-robot problems and provide high-quality solutions for large-scale problems

    Dual band, Miniaturized Permittivity Measurement Sensor with Negative-Order SIW Resonator

    Get PDF
    A novel dual band, highly sensitive Substrate Integrated Waveguide (SIW) sensor for permittivity measurements is presented. A pair of modified Complementary Split Ring Resonators (CSRRs) is etched on SIW surface. CSRRs are located in the center of SIW, where the electric field distribution is high so that the coupling be maximized. The coupling between the SIW and the CSRRs as well as the adjacent CSRRs results in two notches in transmission coefficient. These notches vary with the dielectric loading on the sensor. The ratio of a notch variation to the load permittivity variation determines the sensitivity of proposed sensor. Two sensitivities proportional to two notches are provided. Normalized sensitivities from both notches show identical values. Therefore, any environmental effect have the same variation on the TZs. This demonstrates the potential of the proposed sensor for differential operation that can mitigate the effect of environmental condition. The size of the proposed sensor is small as the inductive and the capacitive effects of CSRRs forced the SIW to operate below the cut off frequency at negative-order-resonance mode. All design steps including SIW design, CSRRs design and modified CSRRs effects are presented in details. The sensor operation principle is described through an equivalent circuit model as well as simulation results. The experimental results indicates that the normalized sensitivity is 3.4% which is much higher than similar sensors. The prototype sensor size (27.8 x 18.4 x 0.508 mm(3)) is smaller than those reported in the literature

    Impact of self-correction on extrovert and introvert students in EFL writing progress

    Get PDF
    Personality is one of the individual differences which is broadly established to have an outcome on learning generally and second language acquisition especially. It sounds that personality traits have types of result on the learners' language learning. In addition, many research projects have shown that corrective feedback in the classroom situation is a real need. Little research has been achieved to discover if definite error correction techniques are more effective with regard to the different personality traits of the language learners. Consequently, 120 female pre-intermediate EFL students will be selected as the participants of the research. They will be assigned to four different groups-two groups include extroverts and two groups include introverts. Subsequently, they will be given five expository topics to write about in a five-week period. While two groups-one extroverted and one introverted will enjoy self-correction, the teacher will correct the writings of the other two groups

    Dynamic models of viral replication and latency.

    Get PDF
    PURPOSE OF REVIEW: HIV targets primary CD4(+) T cells. The virus depends on the physiological state of its target cells for efficient replication, and, in turn, viral infection perturbs the cellular state significantly. Identifying the virus-host interactions that drive these dynamic changes is important for a better understanding of viral pathogenesis and persistence. The present review focuses on experimental and computational approaches to study the dynamics of viral replication and latency. RECENT FINDINGS: It was recently shown that only a fraction of the inducible latently infected reservoirs are successfully induced upon stimulation in ex-vivo models while additional rounds of stimulation make allowance for reactivation of more latently infected cells. This highlights the potential role of treatment duration and timing as important factors for successful reactivation of latently infected cells. The dynamics of HIV productive infection and latency have been investigated using transcriptome and proteome data. The cellular activation state has shown to be a major determinant of viral reactivation success. Mathematical models of latency have been used to explore the dynamics of the latent viral reservoir decay. SUMMARY: Timing is an important component of biological interactions. Temporal analyses covering aspects of viral life cycle are essential for gathering a comprehensive picture of HIV interaction with the host cell and untangling the complexity of latency. Understanding the dynamic changes tipping the balance between success and failure of HIV particle production might be key to eradicate the viral reservoir
    corecore