3 research outputs found

    Observation of competing, correlated ground states in the flat band of rhombohedral graphite

    Get PDF
    In crystalline solids, the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in “magic angle” graphene layers. Much less explored is rhombohedral graphite (RG), perhaps the simplest and structurally most perfect condensed matter system to host a flat band protected by symmetry. By scanning tunneling microscopy, we map the flat band charge density of 8, 10, 14, and 17 layers and identify a domain structure emerging from a competition between a sublattice antiferromagnetic insulator and a gapless correlated paramagnet. Our density matrix renormalization group calculations explain the observed features and demonstrate that the correlations are fundamentally different from graphene-based magnetism identified until now, forming the ground state of a quantum magnet. Our work establishes RG as a platform to study many-body interactions beyond the mean-field approach, where quantum fluctuations and entanglement dominate

    STUDY OF ELECTRONIC PROPERTIES OF RHOMBOHEDRAL GRAPHITE USING SCANNING TUNNELING MICROSCOPE

    No full text
    Rhombohedral or also known as ABC graphite was found to host flat band electronic structures. In the flat band region, many body interactions dominate the system, suppressing kinetic energy down to zero. High temperature superconductivity is believed to exist in such system. In this thesis, analysis on ABC graphite using STM is presented. I reveal flat bands in ABC region by measuring the sample containing both ABC and ABA stacking, and use colormap to display the domain interface of the sample

    A review on friction stir butt welding of aluminum with magnesium: A new insight on joining mechanisms by interfacial enhancement

    No full text
    The growing demand for lightweight materials in the automotive and aerospace industries has driven research on joining dissimilar lightweight alloys, particularly Al and Mg alloys (Al/Mg). Friction stir welding (FSW) is a promising technique for joining Al/Mg alloys, as it works below the base metal's melting temperature, leading to refined microstructures, reduced porosity, and enhanced productivity. The strength of Al/Mg friction stir weldment depends on the evolved interface, which is primarily characterized by micromechanical interlocks, type, and intermetallic compounds (IMCs) distribution. Different interfaces for butt joints have been discussed in the literature. However, the mechanism of interfacial interaction together with the ways to enhance the interface have not been reviewed yet. This review article fills the gap by analyzing the retrospective data for process parameters and mechanical properties. Joining mechanisms and the evolution of different interfaces at the microstructural level have been discussed. Lastly, ways to enhance the interface for improved mechanical properties are explained. By offering essential insights into FSW techniques and Al/Mg weld interfaces, this review article paves the way for developing FSW procedures for Al/Mg butt welds aiming for enhanced strength and performance. This review article is expected to be of interest to researchers and engineers working in the field of FSW, particularly for Al/Mg lightweight applications. It provides an overview of the current state of knowledge and identifies key areas for future research
    corecore