17 research outputs found

    EGLN1 variants influence expression and SaO2 levels to associate with high-altitude pulmonary oedema and adaptation

    Get PDF
    Abstract EGLN1 [encoding HIF (hypoxia-inducible factor)-prolyl hydroxylase 2] plays a pivotal role in the HIF pathway and has emerged as one of the most intriguing genes with respect to physiology at HA (high altitude). EGLN1, being an actual oxygen sensor, appears to have a potential role in the functional adaptation to the hypobaric hypoxic environment. In the present study, we screened 30 polymorphisms of EGLN1, evaluated its gene expression and performed association analyses. In addition, the role of allelic variants in altering TF (transcription factor)-binding sites and consequently the replacement of TFs at these loci was also investigated. The study was performed in 250 HAPE-p [HAPE (HA pulmonary oedema)-patients], 210 HAPE-f (HAPE-free controls) and 430 HLs (healthy Ladakhi highland natives). The genotypes of seven polymorphisms, rs1538664, rs479200, rs2486729, rs2790879, rs480902, rs2486736 and rs973252, differed significantly between HAPE-p and HAPE-f (P < 0.008). The genotypes AA, TT, AA, GG, CC, AA and GG of rs1538664, rs479200, rs2486729, rs2790879, rs480902, rs2486736 and rs973252, prevalent in HAPE-p, were identified as risk genotypes and their counterpart homozygotes, prevalent in HLs, were identified as protective. EGLN1 expression was up-regulated 4.56-fold in HAPE-p (P = 0.0084). The risk genotypes, their haplotypes and interacting genotypes were associated with up-regulated EGLN1 expression (P < 0.05). Similarly, regression analysis showed that the risk alleles and susceptible haplotypes were associated with decreased SaO 2 (arterial oxygen saturation) levels in the three groups. The significant inverse correlation of SaO 2 levels with PASP (pulmonary artery systolic pressure) and EGLN1 expression and the association of these polymorphisms with SaO 2 levels and EGLN1 expression contributed to uncovering the molecular mechanism underlying hypobaric hypoxic adaptation and maladaptation

    Leh Symposium 2012 and PVRI India Annual Symposium

    Full text link

    ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

    No full text
    Priyanka Pandey,1,2 Ghulam Mohammad,1,3 Yogendra Singh,1,2 MA Qadar Pasha1,2 1Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, Maharashtra, 3Department of Medicine, SNM Hospital, Leh, Ladakh, Jammu and Kashmir, IndiaObjective: To date, a major class of kinases, serine–threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early), and morbid disorder, high altitude pulmonary edema (HAPE). This study examined three major serine–threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation.Methods: For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225), HAPE controls (n=210), and highlanders (n=259) by Sequenom MS (TOF)-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups.Results: A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728) with HAPE (P=0.03) and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336) with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively). ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009). MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006) and lower association with adaptation (P=1E–06), whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001) and higher association with adaptation (P=1E–06). Haplotype–haplotype and gene–gene interactions demonstrated a correlation in working of ROCK2 and MYLK.Conclusion: The data suggest the association of ROCK2 with HAPE and MYLK with HAPE and adaptation in Indian population. The outcome has provided new insights into the physiology of HAPE and adaptation. Keywords: adaptation, hypobaric hypoxia, ROCK2, MYLK, high altitude pulmonary edema, SN

    Interactions among Vascular-Tone Modulators Contribute to High Altitude Pulmonary Edema and Augmented Vasoreactivity in Highlanders

    Get PDF
    <div><h3>Background</h3><p>The interactions among various biomarkers remained unexplored under the stressful environment of high-altitude. Present study evaluated interactions among biomarkers to study susceptibility for high altitude pulmonary edema (HAPE) in HAPE-patients (HAPE-p) and adaptation in highland natives (HLs); both in comparison to HAPE-free sojourners (HAPE-f).</p> <h3>Methodology/Principal Findings</h3><p>All the subjects were recruited at 3500 m. We measured clinical parameters, biochemical levels in plasma and gene expression using RNA from blood; analyzed various correlations between and among the clinical parameters, especially arterial oxygen saturation (SaO<sub>2</sub>) and mean arterial pressure (MAP) and biochemical parameters like, asymmetric dimethylarginine (ADMA), serotonin (5-HT), 8-iso-prostaglandin F2α (8-isoPGF2α), endothelin-1 (ET-1), plasma renin activity (PRA), plasma aldosterone concentration (PAC), superoxide dismutase (SOD) and nitric oxide (NO) in HAPE-p, HAPE-f and HLs. ADMA, 5-HT, 8-isoPGF2α, ET-1 levels, and PAC were significantly higher (p<0.0001, each), whereas SOD activity and NO level were significantly lower in HAPE-p than HAPE-f (p≤0.001). Furthermore, ADMA, 5-HT, 8-isoPGF2α, NO levels and PAC were significantly higher (p<0.0001), whereas ET-1 level significantly (p<0.0001) and SOD activity non-significantly (p>0.05) lower in HLs than HAPE-f. The expression of respective genes differed in the three groups. In the correlations, SaO<sub>2</sub> inversely correlated with ADMA, 5-HT and 8-isoPGF2α and positively with SOD in HAPE-p (p≤0.009). MAP correlated positively with 5-HT and 8-isoPGF2α in HAPE-p and HLs (p≤0.004). A strong positive correlation was observed between ADMA and 5-HT, 5-HT and 8-isoPGF2α (p≤0.001), whereas inverse correlation of SOD with ET-1 in HAPE-p and HLs (p≤0.004), with 5-HT and 8-isoPGF2α in HAPE-p (p = 0.01) and with 5-HT in HLs (p = 0.05).</p> <h3>Conclusions/Significance</h3><p>The interactions among these markers confer enhanced vascular activity in HLs and HAPE in sojourners.</p> </div

    Sexual Dimorphism of Dexamethasone as a Prophylactic Treatment in Pathologies Associated With Acute Hypobaric Hypoxia Exposure

    No full text
    Dexamethasone can be taken prophylactically to prevent hypobaric hypoxia-associated disorders of high-altitude. While dexamethasone-mediated protection against high-altitude disorders has been clinically evaluated, detailed sex-based mechanistic insights have not been explored. As part of our India-Leh-Dexamethasone-expedition-2020 (INDEX 2020) programme, we examined the phenotype of control (n = 14) and dexamethasone (n = 13) groups, which were airlifted from Delhi (∼225&nbsp;m elevation) to Leh, Ladakh (∼3,500&nbsp;m), India, for 3&nbsp;days. Dexamethasone 4&nbsp;mg twice daily significantly attenuated the rise in blood pressure, heart rate, pulmonary pressure, and drop in SaO2 resulting from high-altitude exposure compared to control-treated subjects. Of note, the effect of dexamethasone was substantially greater in women than in men, in whom the drug had relatively little effect. Thus, for the first time, this study shows a sex-biased regulation by dexamethasone of physiologic parameters resulting from the hypoxic environment of high-altitude, which impacts the development of high-altitude pulmonary hypertension and acute mountain sickness. Future studies of cellular contributions toward sex-specific regulation may provide further insights and preventive measures in managing sex-specific, high-altitude-related disorders
    corecore