26 research outputs found

    Parliamentary Committee System in Bangladesh: Functional Analysis of different Parliamentary Committee

    Get PDF
    Abstract: “Parliamentary Committee System in Bangladesh: Functional Analysis of different Parliamentary Committee.†this article examines the patterns and performance of Parliamentary Committees in Bangladesh. Committees are ubiquitous. They are found in all types of parliamentary old or new, large or small, The Jatiya Sangsad, as the parliament is called in Bangladesh, is no exception. The evidence presented in this paper clearly shows that the committees set up by recent parliaments have fared far better than their predecessors in almost every function, including scrutinizing legislation and exercising oversight over executive departments. The creation of an elaborate committee system is necessary, but is not sufficient to ensure that it will work unless some other conditions are met. Comparative experience shows that the recommendations of Parliamentary Committees are generally honored. But Bangladesh appears to be a deviant case. Keywords: Jatiya Sangsad (JS), Public Accounts Committee (PAC), Committee on Government Assurance (CGA), ad hoc

    Conversion of Food Processing Waste to Bioenergy: Bangladesh Perspective

    Get PDF
    Microbial fuel cell (MFC) is an attractive renewable and sustainable technology to meet up the drastic energy crisis of the world through waste water treatment. This Bioelectrochemical system (BES) converts biomass spontaneously into electricity by the metabolic activity of microorganisms. Food processing industry generally discharges large volume of wastewater, which creates adverse financial and ecological impacts to the industry and environment. In this present contribution, electricity production from food processing industry wastewater that serves as substrates in MFCs was investigated. Dual chambered mediator-less MFC was designed and fabricated using locally available materials. Performance of the MFC was evaluated by measuring potential parameters, such as current generation, current density, change in pH, and change in chemical oxygen demand at different operating conditions. Polarization experiments were conducted to find the maximum power density. Current generation increased with increasing sludge loading, and maximum results were recorded as 90 µA with 9 g of sludge and optimum pH value 8 in the anode chamber. This study documented a maximum power density of 7.42 mW/m2 with the corresponding current density of 25 mA/m2. Citation: Amin, M. S. A., Talukder, M. J., Raju, R. R., and Khan, M. M. R. (2019). Conversion of Food Processing Waste to Bioenergy: Bangladesh Perspective. Trends in Renewable Energy, 5(1), 1-11. DOI: 10.17737/tre.2019.5.1.008

    Enhanced biohydrogen production from citrus wastewater using anaerobic sludge pretreated by an electroporation technique

    Get PDF
    In the present study, the applicability of electroporation (EP) has been investigated as a pretreatment method for enriching hydrogen producers and eliminating hydrogen consumers in anaerobic sludge (AS). Citrus wastewater was used as a feed source for biohydrogen production. Different treatment intensities (TI) of EP for 0.5 min (TI = 30 kWh/m3), 1 min (TI = 60 kWh/m3), and 2 min (TI = 120 kWh/m3) were employed to observe the effects of EP on the microbial community of AS. Furthermore, sonication with a probe, sonication in a bath, and heat-shock pretreatments were also conducted to compare the hydrogen yield with EP. The cell inactivation was evaluated and visualized using colony-forming units (CFU) and field emission scanning electron microscopy (FESEM), respectively. Among the different TIs, the TI of 60 kWh/m3 achieved higher methanogen inactivation with maximum hydrogen (896 mL) production compared to other EP pretreatments after 180 h of dark fermentation. In comparison with other pretreatments, the highest hydrogen production of 896 mL was achieved with EP treatment, followed by sonication with a probe (678 mL) and sonication in a bath (563 mL). The heat-shock pretreatment exhibited the lowest ultimate hydrogen production of 545 mL among the four different methods applied in this study. The outcome of this study suggests that EP is a promising technique for pretreating mixed cultures for the enhanced production of biohydrogen

    Potentiality of petrochemical wastewater as substrate in microbial fuel cell

    Get PDF
    The petrochemical wastewater (PCW) from acrylic acid plant possesses very high chemical oxygen demand (COD) due to presence of acrylic acid along with other organic acids. The treatment of PCW by conventional methods is energy intensive. The treatment of PCW with concurrent power generation by employing microbial fuel cell (MFC) could be a potential alternative solving the problem of energy and environment. The goal of the present paper is to evaluate the viability of treating the wastewater using anaerobic sludge as biocatalyst in a dual- chamber MFC for simultaneous power generation and wastewater treatment. This study demonstrates that anaerobic sludge (AS) could work as a biocatalyst producing maximum power density of 0.75 W/m3at current density and open circuit voltage (OCV) of 412 mA/m2 and 0.45 V respectively using PCW with an initial COD of 45,000 mg/L. The COD removal efficiency and the columbic efficiency (CE) were found 40% and 13.11%, respectively. The mechanism of electron transfer in the anode was analyzed by cyclic voltammetry (CV) and the resistances across the electrode/biofilm/solution interface were investigated by employing impedance spectroscopy (EIS). The current work proves the capability of the MFC for the treatment of acrylic acid plant PCW using anaerobic sludge (AS) as biocatalyst

    Current issues and potential solutions for the electrospinning of major polysaccharides and proteins: A review

    Get PDF
    Biopolymers, especially polysaccharides and proteins, are the promising green replacement for petroleum based polymers. Due to their innate properties, they are effectively used in biomedical applications, especially tissue engineering, wound healing, and drug delivery. The fibrous morphology of biopolymers is essentially required for the effectiveness in these biomedical applications. Electrospinning (ES) is the most advanced and robust method to fabricate nanofibers (NFs) and provides a complete solution to the conventional methods issues. However, the major issues regarding fabricating polysaccharides and protein nanofibers using ES include poor electrospinnability, lack of desired fundamental properties for a specific application by a single biopolymer, and insolubility among common solvents. The current review provides the main strategies for effective electrospinning of the major biopolymers. The key strategies include blending major biopolymers with suitable biopolymers and optimizing the solvent system. A systematic literature review was done to provide the optimized solvent system of the major biopolymers along with their best possible biopolymeric blend for ES. The review also highlights the fundamental issues with the commercialization of ES based biomedical products and provides future directions to improve the fabrication of biopolymeric nanofibers

    Dataset demonstrating the modeling of a high performance Cu(In,Ga)Se2 absorber based thin film photovoltaic cell

    No full text
    The physical data of the semiconductor materials used in the design of a CIGS absorber based thin film photovoltaic cell have been presented in this data article. Besides, the values of the contact parameter and operating conditions of the cell have been reported. Furthermore, by conducting the simulation with data corresponding to the device structure: soda-lime glass (SLG) substrate/Mo back-contact/CIGS absorber/CdS buffer/intrinsic ZnO/Al-doped ZnO window/Al-grid front-contact, the solar cell performance parameters such as open circuit voltage (Voc), short circuit current density Jsc, fill factor (FF), efficiency (η), and collection efficiency ηc have been analyzed

    Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata

    No full text
    This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T=2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed
    corecore