668 research outputs found

    Blockchain-based privacy-preserving healthcare architecture

    Get PDF
    Since the introduction of Internet of Things (IoT), e-health has become one of the main research topics.Due to the sensitivity of patient data,preserving the privacy of patientsappears to be challenging. In healthcare applications, patient data are usually stored in the cloud, which makes it difficult for the users to have enough control over their data. However, due to the General Data Protection Regulation (GDPR), it is the data subject’s right to know where and how hisdata has been stored, who can access hisdata and to what extent. In this paper, we propose a blockchain-based architecture for e-health applications whichprovides an efficient privacy-preserving access control mechanism. We take advantage of Blockchain(BC)special features, i.e., immutability and anonymity of users,whilemodifyingthe classic blockchain structure in order to overcome its challenges in IoT applications(i.e., low throughput, high overhead and latency). To this end, we cluster the miners of BC, store and process data at the nearest clusterto the patient. While our proposal is a work in progress, we provide a security analysis of our proposed architecture

    Evaluating different scenarios for optimizing energy consumption to achieve sustainable green building in Malaysia

    Get PDF
    One of the most users of energy in the construction industry is residential buildings that use the high value of energy. Because of the high effect of construction activities on environment, serious attention should be given to sustainability concept in construction activities. There are climate factors such as temperature, humidity and pressure that have a considerable effect on the sustainability of green buildings based on energy consumption. The main goal of this paper is to achieve a sustainable green building by optimizing the energy consumption based on two significant factors which are temperature and humidity. To achieve this goal, the design of experiments (DOE) and building simulation are applied. A two-storey house in Malaysia was selected as the case study. The final result shows that to achieve the optimum value of cooling load to have a sustained design of green residential buildings all the significant factors should be placed on a low level which it means that temperature and humidity should be equal to 20 degrees Celsius and 60% respectively

    Analysis of Longitudinal Cracks in Crest of Doroodzan Dam

    Get PDF
    Doroodzan earth dam is located in 85 km north western of Shiraz. Because of the unusual seepage flow in the left abutment, in 1992 an impermeable vane was grouted there. Soon after that, obvious changes in water Table profile occurred and simultaneously some incremental number of cracks in left abutment crest was appeared. In present study seepage through left abutment has been analyzed by considering water Table changes. Different phreatic surface line was carried out from recent 20 years in order to find the most vulnerable one. In addition, Seismic loading used to get proper perception of seismic stability. First, by gathering data from piezometric head through the left abutment, most critical phreatic line in left abutment section of dam was observed. Then by using present phreatic surface in numerical modeling of critical section in the left abutment of dam, long term stability of downstream in different situation were calculated. The conditions were changed by increasing the saturation zone and the time which saturation zone stay through the downstream body

    Studies on Effective Parameters onto Graft Copolymerization of Acrylic Acid onto Alginate

    Get PDF
    ABSTRACT The polysaccharide, alginate, has been chemically modified by graft copolymerization of acrylic acid in an aqueous medium using ammonium persulfate (APS) as an initiator under argon atmosphere. The synthetic conditions were systematically optimized through studying the influential factors including temperature, concentration of the initiator, AcA monomer and alginate substrate

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    The Impact of High-Intensity Interval Training on Vascular Function in Adults: A Systematic Review and Meta-Analysis

    Get PDF
    Aim: We performed a systematic review and meta-analysis to investigate the effects of high-intensity interval training (HIIT) compared with moderateintensity continuous training (MICT) or with no exercise (CON) on vascular function in adults who were free of cardiometabolic diseases and those with cardiometabolic diseases. Methods: A search across three electronic databases including Scopus, PubMed, and Web of Science was conducted through February 2022 to identify the randomized trials evaluating HIIT vs. MICT and/or CON on vascular function as measured using brachial artery flow-mediated dilation (FMD) in adults. Separate analyses were conducted for HIIT vs. MICT and/or CON to calculate weighted mean differences (WMD) and 95% confidence intervals (95% CIs) using random or fixed models. Results: A total of 36 studies involving 1,437 participants who were either free of cardiometabolic diseases or had cardiometabolic diseases were included in the meta-analysis. HIIT effectively increased FMD when compared with MICT [1.59% (95% CI 0.87–2.31), p = 0.001] or CON [3.80% (95% CI 2.58–5.01), p = 0.001]. Subgroup analysis showed that HIIT increased FMD in participants with cardiovascular and metabolic diseases, but not in participants who were free of cardiometabolic diseases. In addition, HIIT effectively increased FMD regardless of age and body mass index. Conclusion: We confirm that HIIT is effective for improving vascular function in individuals with metabolic disorders and cardiovascular diseases and has a superior effect compared to MICT, demonstrating time efficiency. Systematic review registration: [https://www.crd.york.ac.uk/prospero], identifier [CRD42022320863]

    Curvaton and the inhomogeneous end of inflation

    Get PDF
    We study the primordial density perturbations and non-Gaussianities generated from the combined effects of an inhomogeneous end of inflation and curvaton decay in hybrid inflation. This dual role is played by a single isocurvature field which is massless during inflation but acquire a mass at the end of inflation via the waterfall phase transition. We calculate the resulting primordial non-Gaussianity characterized by the non-linearity parameter, fNLf_{NL}, recovering the usual end-of-inflation result when the field decays promptly and the usual curvaton result if the field decays sufficiently late.Comment: 13 pages, 5 figure

    Ear and Face Mucormycosis; A Case Report.

    Full text link
    peer reviewedMucormycosis is an invasive fungal infection belonging to order of Mucorales which causes a high rate of mortality. This infection is mostly common in the immunosuppression conditions such as diabetes mellitus, chemotherapy, organ transplantation and hematologic malignancies

    DBI Lifshitz Inflation

    Full text link
    A new model of DBI inflation is introduced where the mobile brane, the inflaton field, is moving relativistically inside a Lifshitz throat with an arbitrary anisotropic scaling exponent zz. After dimensional reduction to four dimension the general covariance is broken explicitly both in the matter and the gravitational sectors. The general action for the metric and matter field perturbations are obtained and it is shown to be similar to the classifications made in the effective field theory of inflation literature.Comment: Version 3: minor typos corrected, the JCAP published versio

    FLYWCH1, a novel suppressor of nuclear b-catenin, regulates migration and morphology in colorectal cancer

    Get PDF
    © 2018 American Association for Cancer Research. Wnt/b-catenin signaling plays a critical role during development of both normal and malignant colorectal cancer tissues. Phosphorylation of b-catenin protein alters its trafficking and function. Such conventional allosteric regulation usually involves a highly specialized set of molecular interactions, which may specifically turn on a particular cell phenotype. This study identifies a novel transcription modulator with an FLYWCH/Zn-finger DNA-binding domain, called "FLYWCH1." Using a modified yeast-2-hybrid based Ras-Recruitment system, it is demonstrated that FLYWCH1 directly binds to unphosphorylated (nuclear) b-catenin efficiently suppressing the transcriptional activity of Wnt/ b-catenin signaling that cannot be rescued by TCF4. FLYWCH1 rearranges the transcriptional activity of b-catenin/TCF4 to selectively block the expression of specific downstream genes associated with colorectal cancer cell migration and morphology, including ZEB1, EPHA4, and E-cadherin. Accordingly, overexpression of FLYWCH1 reduces cell motility and increases cell attachment. The expression of FLYWCH1 negatively correlates with the expression level of ZEB1 and EPHA4 in normal versus primary and metastatic colorectal cancer tissues in patients. Thus, FLYWCH1 antagonizes b-catenin/TCF4 signaling during cell polarity/migration in colorectal cancer. Implications: This study uncovers a new molecular mechanism by which FLYWCH1 with a possible tumor suppressive role represses b-catenin-induced ZEB1 and increases cadherin-mediated cell attachment preventing colorectal cancer metastasis
    corecore