8 research outputs found

    Phospholipid Based Nano Drug Delivery Systems of Phytoconstituents

    No full text
    The development of phytochemistry and phyto-pharmacology has enabled elucidation of composition and biological activities of several medicinal plant constituents. However phytoconstituents are poorly absorbed due to their low aqueous solubility, large molecular size and poor membrane permeability when taken orally. Nanotechnology based drug delivery systems can be used to improve the dissolution rate, permeability and stability of these phytoconstituents. The current chapter aims to present the extraction of phytoconstituents, their identifications, and development/utilization of phospholipid based nano drug delivery systems (PBNDDS). The content of the chapter also provides characteristic features, in-vitro, in-vivo evaluations and stability performance of PBNDDS. The results from the UHPLC and GC-MS showed different phytoconstituents in the extracted samples with quantitative value. Dynamic light scattering (DLS) data showed PBNDDS of different phytoconstituents in the range of 50–250 nm with PDI value of 0.02–0.5, which was also confirmed by the electron microscopic data. Phytoconstituents loading or entrapment for PBNDDS was in the range of 60–95%. PBNDDS exhibited better in-vitro and in-vivo performance with improved Physico-chemical stability

    The growing complexity of COVID-19 drug and vaccine candidates: challenges and critical transitions

    No full text
    COVID-19 has nowadays affected almost all our societies and global health systems. The latest deadly pandemic has heavily influenced both life and livelihood worldwide. SARS-CoV-2 is the causative organism of COVID-19, that is spreading and infecting significantly higher compared to other coronavirus, due to its constant mutation characteristics. At present although several extensive clinical trials are ongoing, neither approved drug therapy nor any vaccine are available to safely fight SARS-CoV-2. However, a progressive race among numerous research groups to discover a radical cure for the COVID-19 is under way. This review aims to provide an updated insight of the current research, development and trials on repurposing existing drugs and preventive intervention for COVID-19, along with the related issues, complexities and challenges, especially after the observed high transmissibility lately

    Development of Stable Liposomal Drug Delivery System of Thymoquinone and Its In Vitro Anticancer Studies Using Breast Cancer and Cervical Cancer Cell Lines

    No full text
    Thymoquinone, a well-known phytoconstituent derived from the seeds of Nigella sativa, exhibits unique pharmacological activities However, despite the various medicinal properties of thymoquinone, its administration in vivo remains challenging due to poor aqueous solubility, bioavailability, and stability. Therefore, an advanced drugdelivery system is required to improve the therapeutic outcome of thymoquinone by enhancing its solubility and stability in biological systems. Therefore, this study is mainly focused on preparing thymoquinone-loaded liposomes to improve its physicochemical stability in gastric media and its performance in different cancer cell line studies. Liposomes were prepared using phospholipid extracted from egg yolk. The liposomal nano preparations were evaluated in terms of hydrodynamic diameter, zeta potential, microscopic analysis, and entrapment efficiency. Cell-viability measurements were conducted using breast and cervical cancer cell lines. Optimized liposomal preparation exhibited polygonal, globule-like shape with a hydrodynamic diameter of less than 260 nm, PDI of 0.6, and zeta potential values of −23.0 mV. Solid-state characterizations performed using DSC and XRPD showed that the freeze-dried liposomal preparations were amorphous in nature. Gastric pH stability data showed no physical changes (precipitation, degradation) or significant growth in the average size of blank and thymoquinone-loaded liposomes after 24 h. Cell line studies exhibited better performance for thymoquinone-loaded liposomal drug delivery system compared with the thymoquinone-only solution; this finding can play a critical role in improving breast and cervical cancer treatment management

    Preparation and Optimization of PEGylated Nano Graphene Oxide-Based Delivery System for Drugs with Different Molecular Structures Using Design of Experiment (DoE)

    No full text
    Graphene oxide (GO), due to its 2D planar structure and favorable physical and chemical properties, has been used in different fields including drug delivery. This study aimed to investigate the impact of different process parameters on the average size of drug-loaded PEGylated nano graphene oxide (NGO-PEG) particles using design of experiment (DoE) and the loading of drugs with different molecular structures on an NGO-PEG-based delivery system. GO was prepared from graphite, processed using a sonication method, and functionalized using PEG 6000. Acetaminophen (AMP), diclofenac (DIC), and methotrexate (MTX) were loaded onto NGO-PEG particles. Drug-loaded NGO-PEG was then characterized using dynamic light scattering (DLS), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), XRD. The DLS data showed that the drug-loaded NGO-PEG suspensions were in the size range of 200 nm–1.3 µm. The sonication time and the stirring rate were found to be the major process parameters which affected the average size of the drug-loaded NGO-PEG. FTIR, DSC, XRD, and SEM demonstrated that the functionalization or coating of the NGO occurred through physical interaction using PEG 6000. Methotrexate (MTX), with the highest number of aromatic rings, showed the highest loading efficiency of 95.6% compared to drugs with fewer aromatic rings (diclofenac (DIC) 70.5% and acetaminophen (AMP) 65.5%). This study suggests that GO-based nano delivery systems can be used to deliver drugs with multiple aromatic rings with a low water solubility and targeted delivery (e.g., cancer)

    Liposomal Drug Delivery of Blumea lacera Leaf Extract: In-Vivo Hepatoprotective Effects

    No full text
    Background: Blumea lacera (B. lacera) is a herbaceous plant commonly found in south-east Asia. It shows significant therapeutic activities against various diseases. The objectives of this study were to evaluate hepatoprotective effects of Blumea lacera leaf extract and also to investigate the comparative effectiveness between a liposomal preparation and a suspension of B. lacera leaf extract against carbon tetrachloride (CCl4)-induced liver damage. Methods: B. lacera leaf extract was characterized using a GC-MS method. A liposomal preparation of B. lacera leaf extract was developed using an ethanol injection method and characterized using dynamic light scattering (DLS) and electronic microscopic systems. The hepatoprotective effects of B. lacera leaf extracts and its liposomal preparation were investigated using CCl4-induced liver damage in Long Evan rats. Results: GC-MS data showed the presence of different components (e.g., phytol) in the B. lacera leaf extract. DLS and microscopic data showed that a liposomal preparation of B. lacera leaf extracts was in the nano size range. In vivo study results showed that liposomal preparation and a suspension of B. lacera leaf extract normalized liver biochemical parameters, enzymes and oxidative stress markers which were elevated due to CCl4 administration. However, a liposomal formulation of B. lacera leaf extract showed significantly better hepatoprotective effects compared to a suspension of leaf extract. In addition, histopathological evaluation showed that B. lacera leaf extract and its liposomal preparation treatments decreased the extent of CCl4-induced liver inflammations. Conclusion: Results demonstrated that B. lacera leaf extract was effective against CCl4-induced liver injury possibly due to the presence of components such as phytol. A liposomal preparation exhibited significantly better activity compared to a B. lacera suspension, probably due to improved bioavailability and stability of the leaf extract

    The rational design of drug crystals to facilitate particle size reduction : investigation of crystallisation conditions and crystal properties to enable optimised particle processing and comminution

    No full text
    Micronisation of active pharmaceutical ingredients (APIs) to achieve desirable quality attributes for formulation preparation and drug delivery remains a major challenge in the pharmaceutical sciences. It is therefore important that the relationships between crystal structure, the mechanical properties of powders and their subsequent influence on processing behaviour are well understood. The aim of this project was therefore to determine the relative importance of particle attributes including size, crystal quality and morphology on processing behaviour and the characteristics of micronised materials. It was then subsequently intended to link this behaviour back to crystal structure and the nature of molecular packing and intermolecular interactions within the crystal lattice enabling the identification of some generic rules which govern the quality of size reduced powders. In this regard, different sieve fractions of lactose monohydrate and crystal variants of ibuprofen and salbutamol sulphate (size, morphology and crystal quality) were investigated in order to determine those factors with greatest impact on post-micronisation measures of particle quality including particle size, degree of crystallinity and surface energy. The results showed that smaller sized feedstock should typically be used to achieve ultrafine powders with high crystallinity. This finding is attributed to the reduced number of fracture events necessary to reduce the size of the particles leading to decreases in milling residence time. However the frequency of crystal cracks is also important, with these imperfections being implicated in crack propagation and brittle fracture. Ibuprofen crystals with a greater number of cracks showed a greater propensity for comminution. Salbutamol sulphate with a high degree of crystal dislocations however gave highly energetic powders, with reduced degree of crystallinity owing to the role dislocations play in facilitating plastic deformation, minimising fragmentation and extending the residence of particles in the microniser. Throughout these studies, morphology was also shown to be critical, with needle like morphology giving increased propensity for size reduction for both ibuprofen and salbutamol sulphate, which is related to the small crack propagation length of these crystals. This behaviour is also attributed to differences in the relative facet areas for the different morphologies of particles, with associated alternative deformation behaviour and slip direction influencing the size reduction process. Molecular modelling demonstrated a general relationship between low energy slip planes, d-spacing and brittleness for a range of materials, with finer particle size distributions achieved for APIs with low value of highest d-spacings for identified slip planes. The highest d-spacing for any material can be readily determined by PXRD (powder x-ray diffraction) which can potentially be used to rank the milling behaviour of pharmaceutical materials and provides a rapid assessment tool to aid process and formulation design. These studies have shown that a range of crystal properties of feedstock can be controlled in order to provide micronised powders with desirable attributes. These include the size, morphology and the density of defects and dislocations in the crystals of the feedstock. Further studies are however required to identify strategies to ensure inter-batch consistency in these attributes following crystallisation of organic molecules.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Preparation and Optimization of PEGylated Nano Graphene Oxide-Based Delivery System for Drugs with Different Molecular Structures Using Design of Experiment (DoE)

    No full text
    Graphene oxide (GO), due to its 2D planar structure and favorable physical and chemical properties, has been used in different fields including drug delivery. This study aimed to investigate the impact of different process parameters on the average size of drug-loaded PEGylated nano graphene oxide (NGO-PEG) particles using design of experiment (DoE) and the loading of drugs with different molecular structures on an NGO-PEG-based delivery system. GO was prepared from graphite, processed using a sonication method, and functionalized using PEG 6000. Acetaminophen (AMP), diclofenac (DIC), and methotrexate (MTX) were loaded onto NGO-PEG particles. Drug-loaded NGO-PEG was then characterized using dynamic light scattering (DLS), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), XRD. The DLS data showed that the drug-loaded NGO-PEG suspensions were in the size range of 200 nm–1.3 µm. The sonication time and the stirring rate were found to be the major process parameters which affected the average size of the drug-loaded NGO-PEG. FTIR, DSC, XRD, and SEM demonstrated that the functionalization or coating of the NGO occurred through physical interaction using PEG 6000. Methotrexate (MTX), with the highest number of aromatic rings, showed the highest loading efficiency of 95.6% compared to drugs with fewer aromatic rings (diclofenac (DIC) 70.5% and acetaminophen (AMP) 65.5%). This study suggests that GO-based nano delivery systems can be used to deliver drugs with multiple aromatic rings with a low water solubility and targeted delivery (e.g., cancer)
    corecore