16 research outputs found

    Prenatal diagnosis of Sex determining region Y -box transcription factor 2 anophthalmia syndrome caused by germline mosaicism using next-generation sequencing: A case report

    Get PDF
    Background: Sex determining region Y box transcription factor 2 (SOX2) mutations lead to bilateral anophthalmia with autosomal dominant human inheritance. SOX2 mutations could result in severe ocular phenotypes usually associated with variable systemic defects. Most patients described with SOX2 anophthalmia syndrome possessed de novo mutations in this gene. Case Presentation: In this case report, we describe 2 brothers with mental retardation and bilateral anophthalmia caused due to SOX2 germline mosaicism in unaffected parents. Next-generation DNA sequencing was carried out to determine the family’s possible cause of genetic mutation. Sanger sequencing was performed on the patients and their parents. Prenatal diagnosis was done in both pregnancies of the older brother’s wife via chorionic villus sampling. A novel heterozygous pathogenic frameshift deletion variant (exon1:c.58_80del:p.G20fs) was identified in the SOX2 gene, which was confirmed by Sanger sequencing in both affected brothers and did not exist in healthy parents, indicating germline mosaicism. Conclusion: Most SOX2 mutations known look to arise de novo in probands and are diagnosed through anophthalmia or microphthalmia. Prenatal diagnosis should be offered to healthy parents with a child with SOX2 mutation every pregnancy. Key words: Anophthalmos, SOX2 anophthalmia syndrome, Mosaicism

    Novel mutations in PANK2 and PLA2G6 genes in patients with neurodegenerative disorders: two case reports

    No full text
    Abstract Background Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous group of disorders associated with progressive impairment of movement, vision, and cognition. The disease is initially diagnosed on the basis of changes in brain magnetic resonance imaging which indicate an abnormal brain iron accumulation in the basal ganglia. However, the diagnosis of specific types should be based on both clinical findings and molecular genetic testing for genes associated with different types of NBIA, including PANK2, PLA2G6, C19orf12, FA2H, ATP13A2, WDR45, COASY, FTL, CP, and DCAF17. The purpose of this study was to investigate disease-causing mutations in two patients with distinct NBIA disorders. Case presentation Whole Exome sequencing using Next Generation Illumina Sequencing was used to enrich all exons of protein-coding genes as well as some other important genomic regions in these two affected patients. A deleterious homozygous four-nucleotide deletion causing frameshift deletion in PANK2 gene (c.1426_1429delATGA, p.M476 fs) was identified in an 8 years old girl with dystonia, bone fracture, muscle rigidity, abnormal movement, lack of coordination and chorea. In addition, our study revealed a novel missense mutation in PLA2G6 gene (c.3G > T:p.M1I) in one and half-year-old boy with muscle weakness and neurodevelopmental regression (speech, motor and cognition). The novel mutations were also confirmed by Sanger sequencing in the proband and their parents. Conclusions Current study uncovered two rare novel mutations in PANK2 and PLA2G6 genes in patients with NBIA disorder and such studies may help to conduct genetic counseling and prenatal diagnosis more accurately for individuals at the high risk of these types of disorders

    A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome

    No full text
    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family

    A case report of novel mutation in PRF1 gene, which causes familial autosomal recessive hemophagocytic lymphohistiocytosis

    No full text
    Abstract Background Hemophagocytic Lymphohistiocytosis (HLH) is a life-threatening immunodeficiency and multi-organ disease that affects people of all ages and ethnic groups. Common symptoms and signs of this disease are high fever, hepatosplenomegaly, and cytopenias. Familial form of HLH disease, which is an autosomal recessive hematological disorder is due to disease-causing mutations in several genes essential for NK and T-cell granule-mediated cytotoxic function. For an effective cytotoxic response from cytotoxic T lymphocyte or NK cell encountering an infected cell or tumor cell, different processes are required, including trafficking, docking, priming, membrane fusion, and entry of cytotoxic granules into the target cell leading to apoptosis. Therefore, genes involved in these steps play important roles in the pathogenesis of HLH disease which include PRF1, UNC13D (MUNC13-4), STX11, and STXBP2 (MUNC18-2). Case presentation Here, we report a novel missense mutation in an 8-year-old boy suffered from hepatosplenomegaly, hepatitis, epilepsy and pancytopenia. The patient was born to a first-cousin parents with no previous documented disease in his parents. To identify mutated gene in the proband, Whole Exome Sequencing (WES) utilizing next generation sequencing was used on an Illumina HiSeq 2000 platform on DNA sample from the patient. Results showed a novel deleterious homozygous missense mutation in PRF1 gene (NM_001083116: exon3: c. 1120 T > G, p.W374G) in the patient and then using Sanger sequencing it was confirmed in the proband and his parents. Since his parents were heterozygous for the identified mutation, autosomal recessive pattern of inheritance was confirmed in the family. Conclusions Our study identified a rare new pathogenic missense mutation in PRF1 gene in patient with HLH disease and it is the first report of mutation in PRF1 in Iranian patients with this disease

    A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome

    No full text
    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene (ERCC6), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family

    A Novel TTC19 Mutation in a Patient With Neurological, Psychological, and Gastrointestinal Impairment

    Get PDF
    Mitochondrial complex III deficiency nuclear type 2 is an autosomal-recessive disorder caused by mutations in TTC19 gene. TTC19 is involved in the preservation of mitochondrial complex III, which is responsible for transfer of electrons from reduced coenzyme Q to cytochrome C and thus, contributes to the formation of electrochemical potential and subsequent ATP generation. Mutations in TTC19 have been found to be associated with a wide range of neurological and psychological manifestations. Herein, we report on a 15-year-old boy born from first-degree cousin parents, who initially presented with psychiatric symptoms. He subsequently developed progressive ataxia, spastic paraparesis with involvement of caudate bodies and lentiform nuclei with cerebellar atrophy. Eventually, the patient developed gastrointestinal involvement. Using whole-exome sequencing (WES), we identified a novel homozygous frameshift mutation in the TTC19 gene in the patient (NM_017775.3, c.581delG: p.Arg194Asnfs(*)16). Advanced genetic sequencing technologies developed in recent years have not only facilitated identification of novel disease genes, but also allowed revelations about novel phenotypes associated with mutations in the genes already linked with other clinical features. Our findings expanded the clinical features of TTC19 mutation to potentially include gastrointestinal involvement. Further functional studies are needed to elucidate the underlying pathophysiological mechanisms

    A novel splice site mutation in WAS gene in patient with Wiskott-Aldrich syndrome and chronic colitis: a case report

    Get PDF
    Abstract Background Wiskott-Aldrich syndrome is an X-linked recessive immunodeficiency due to mutations in Wiskott-Aldrich syndrome (WAS) gene. WAS gene is encoded for a multifunctional protein with key roles in actin polymerization, signaling pathways, and cytoskeletal rearrangement. Therefore, the impaired protein or its absence cause phenotypic spectrum of the disease. Since identification of novel mutations in WAS gene can help uncover the exact pathogenesis of Wiskott-Aldrich syndrome, the purpose of this study was to investigate disease causing-mutation in an Iranian male infant suspicious of this disorder. Case presentation The patient had persistent thrombocytopenia from birth, sepsis, and recurrent gastrointestinal bleeding suggestive of both Wiskott-Aldrich syndrome and chronic colitis in favor of inflammatory bowel disease (IBD). To find mutated gene in the proband, whole exome sequencing was performed for the patient and its data showed a novel, private, hemizygous splice site mutation in WAS gene (c.360 + 1G > C). Conclusions Our study found a novel, splice-site mutation in WAS gene and help consider the genetic counselling more precisely for families with clinical phenotypes of both Wiskott-Aldrich syndrome and inflammatory bowel disease and may suggest linked pathways between these two diseases
    corecore