184 research outputs found
Characterisation of the Fibrinogen RGD Sequence in Erythrocyte Binding and Clot Structure
Background: Fibrinogen is a large protein dimer that is composed of three
polypeptide chains Aα, Bβ and γ and plays a vital role in haemostasis. Fibrinogen
is suggested to be a risk factor for cardiovascular disease. The Aα-chain contains
two RGD sequences, which provide the interaction sites of fibrinogen with
integrins present on cells such as platelets and endothelial cells. New studies
suggested that RBCs are not innocent bystanders in thrombus formation
suggesting presence of polyhedral shaped RBCs inside the clot. An integrin-type
receptor interaction between erythrocytes and fibrinogen was proposed but
some controversy is still present regarding the possible receptor on the surface
of the RBC involved in this interaction between fibrinogen and RBCs.
Hypothesis: Interaction between fibrinogen and RBCs is mediated by the RGD
sequence in the coiled-coil of the Aα-chain of fibrinogen through αIIbβ3-like
integrin receptor. Mutating this RGD site may inhibit the interaction between
fibrinogen and RBCs and subsequently thrombosis.
Methods: Six recombinant fibrinogens variants (R95E, R95Q, G96V, D97K,
D97N, and F98I) were generated by Site-Directed Mutagenesis. The integrity of
the proteins were tested by SDS-PAGE and circular dichroism. Clots formed by
variant fibrinogens were evaluated by clotability, turbidity and lysis, and laser
scanning confocal microscopy. Interaction between fibrinogen and RBCs were
studied by Plate-binding assay, solution-binding assay and flow cytometry.
Involvement of the Aα-chain RGD sequence in binding between fibrinogen and
platelets was tested by platelet spreading assay.
Results: Clot structure studies showed thinner, shorter fibres but no effect on
fibrinolysis. Fibrinogen binding assays with both RBCs and platelets showed no
effects of the mutations in the Aα-chain RGD sequence on cell binding.
Conclusion: Aα-95-98 RGD has no obvious effect on the binding between red
blood cells and fibrinogen, or platelets and fibrinogen. Nonetheless, mutations at
this site change clot structure and polymerisation profile
Preclinical modeling of myelodysplastic syndromes
Myelodysplastic syndromes (MDS) represent a heterogeneous group of hematological clonal disorders. Here, we have tested the bone marrow (BM) cells from 38 MDS patients covering all risk groups in two immunodeficient mouse models: NSG and NSG-S. Our data show comparable level of engraftment in both models. The level of engraftment was patient specific with no correlation to any specific MDS risk group. Furthermore, the co-injection of mesenchymal stromal cells (MSCs) did not improve the level of engraftment. Finally, we have developed an in vitro two-dimensional co-culture system as an alternative tool to in vivo. Using our in vitro system, we have been able to co-culture CD34+cells from MDS patient BM on auto- and/or allogeneic MSCs over 4 weeks with a fold expansion of up to 600 times. More importantly, these expanded cells conserved their MDS clonal architecture as well as genomic integrity
The TWEAK receptor Fn14 is a therapeutic target in melanoma: immunotoxins targeting Fn14 receptor for malignant melanoma treatment.
Fibroblast growth factor-inducible protein 14 (Fn14), the cell surface receptor for tumor necrosis factor-like weak inducer of apoptosis (TWEAK), is overexpressed in various human solid tumor types and can be a negative prognostic indicator. We detected Fn14 expression in ∼60% of the melanoma cell lines we tested, including both B-Raf WT and B-Raf(V600E) lines. Tumor tissue microarray analysis indicated that Fn14 expression was low in normal skin, but elevated in 173/190 (92%) of primary melanoma specimens and in 86/150 (58%) of melanoma metastases tested. We generated both a chemical conjugate composed of the recombinant gelonin (rGel) toxin and the anti-Fn14 antibody ITEM-4 (designated ITEM4-rGel) and a humanized, dimeric single-chain antibody of ITEM-4 fused to rGel (designated hSGZ). Both ITEM4-rGel and hSGZ were highly cytotoxic to a panel of different melanoma cell lines. Mechanistic studies showed that both immunotoxins induced melanoma cell necrosis. In addition, these immunotoxins could upregulate the cellular expression of Fn14 and trigger cell-signaling events similar to the Fn14 ligand TWEAK. Finally, treatment of mice bearing human melanoma MDA-MB-435 xenografts with either ITEM4-rGel or hSGZ showed significant tumor growth inhibition compared with controls. We conclude that Fn14 is a therapeutic target in melanoma and the hSGZ construct appears to warrant further development as a therapeutic agent against Fn14-positive melanoma
Quantification of lentiviral vector copy numbers in individual hematopoietic colony-forming cells shows vector dose-dependent effects on the frequency and level of transduction
Lentiviral vectors are effective tools for gene transfer and integrate variable numbers of proviral DNA copies in variable proportions of cells. The levels of transduction of a cellular population may therefore depend upon experimental parameters affecting the frequency and/or the distribution of vector integration events in this population. Such analysis would require measuring vector copy numbers (VCN) in individual cells. To evaluate the transduction of hematopoietic progenitor cells at the single-cell level, we measured VCN in individual colony-forming cell (CFC) units, using an adapted quantitative PCR (Q-PCR) method. The feasibility, reproducibility and sensitivity of this approach were tested with characterized cell lines carrying known numbers of vector integration. The method was validated by correlating data in CFC with gene expression or with calculated values, and was found to slightly underestimate VCN. In spite of this, such Q-PCR on CFC was useful to compare transduction levels with different infection protocols and different vectors. Increasing the vector concentration and re-iterating the infection were two different strategies that improved transduction by increasing the frequency of transduced progenitor cells. Repeated infection also augmented the number of integrated copies and the magnitude of this effect seemed to depend on the vector preparation. Thus, the distribution of VCN in hematopoietic colonies may depend upon experimental conditions including features of vectors. This should be carefully evaluated in the context of ex vivo hematopoietic gene therapy studies
Catalytic conversion of methane at low temperatures: a critical review
The current study reviews the recent development in the direct conversion of methane into syngas, methanol, light olefins, and aromatic compounds. For syngas production, nickel-based catalysts are considered as a good choice. Methane conversion (84%) is achieved with nearly no coke formation when the 7% Ni-1%Au/Al2O3 catalyst is used in the steam reforming of methane (SRM), whereas for dry reforming of methane (DRM), a methane conversion of 17.9% and CO2 conversion of 23.1% are found for 10%Ni/ZrOxMnOx/SiO2 operated at 500oC. The progress of direct conversion of methane to methanol is also summarized with an insight into its selectivity and/or conversion, which shows that in liquid-phase heterogeneous systems, high selectivity (>80%) can be achieved at 50oC, but the conversion is low. The latest development of nonoxidative coupling of methane (NOCM) and oxidative coupling of methane (OCM) for the production of olefins is also reviewed. The Mn2O3–TiO2–Na2WO4/SiO2 catalyst is reported to show the high C2 yield (22%) and a high selectivity toward C2 (62%) during the OCM at 650oC. For NOCM, 98% selectivity of ethane can be achieved when a tantalum hydride catalyst supported on silica is used. In addition, the Mo-based catalysts are the most suitable for the preparation of aromatic compounds from methane
SNP Array Karyotyping Allows for the Detection of Uniparental Disomy and Cryptic Chromosomal Abnormalities in MDS/MPD-U and MPD
We applied single nucleotide polymorphism arrays (SNP-A) to study karyotypic abnormalities in patients with atypical myeloproliferative syndromes (MPD), including myeloproliferative/myelodysplastic syndrome overlap both positive and negative for the JAK2 V617F mutation and secondary acute myeloid leukemia (AML). In typical MPD cases (N = 8), which served as a control group, those with a homozygous V617F mutation showed clear uniparental disomy (UPD) of 9p using SNP-A. Consistent with possible genomic instability, in 19/30 MDS/MPD-U patients, we found additional lesions not identified by metaphase cytogenetics. In addition to UPD9p, we also have detected UPD affecting other chromosomes, including 1 (2/30), 11 (4/30), 12 (1/30) and 22 (1/30). Transformation to AML was observed in 8/30 patients. In 5 V617F+ patients who progressed to AML, we show that SNP-A can allow for the detection of two modes of transformation: leukemic blasts evolving from either a wild-type jak2 precursor carrying other acquired chromosomal defects, or from a V617F+ mutant progenitor characterized by UPD9p. SNP-A-based detection of cryptic lesions in MDS/MPD-U may help explain the clinical heterogeneity of this disorder
Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias
<p>Abstract</p> <p>Background</p> <p>Gene mutation is an important mechanism of myeloid leukemogenesis. However, the number and combination of gene mutated in myeloid malignancies is still a matter of investigation.</p> <p>Methods</p> <p>We searched for mutations in the <it>ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 </it>and <it>WT1 </it>genes in 65 myelodysplastic syndromes (MDSs) and 64 acute myeloid leukemias (AMLs) without balanced translocation or complex karyotype.</p> <p>Results</p> <p>Mutations in <it>ASXL1 </it>and <it>CBL </it>were frequent in refractory anemia with excess of blasts. Mutations in <it>TET2 </it>occurred with similar frequency in MDSs and AMLs and associated equally with either <it>ASXL1 </it>or <it>NPM1 </it>mutations. Mutations of <it>RUNX1 </it>were mutually exclusive with <it>TET2 </it>and combined with <it>ASXL1 </it>but not with <it>NPM1</it>. Mutations in <it>FLT3 (</it>mutation and internal tandem duplication), <it>IDH1</it>, <it>IDH2</it>, <it>NPM1 </it>and <it>WT1 </it>occurred primarily in AMLs.</p> <p>Conclusion</p> <p>Only 14% MDSs but half AMLs had at least two mutations in the genes studied. Based on the observed combinations and exclusions we classified the 12 genes into four classes and propose a highly speculative model that at least a mutation in one of each class is necessary for developing AML with simple or normal karyotype.</p
CDK-Mediated Regulation of Cell Functions via c-Jun Phosphorylation and AP-1 Activation
Cyclin-dependent kinases (CDKs) and their targets have been primarily associated
with regulation of cell-cycle progression. Here we identify c-Jun, a
transcription factor involved in the regulation of a broad spectrum of cellular
functions, as a newly recognized CDK substrate. Using immune cells from mouse
and human, and several complementary in vitro and in
vivo approaches including dominant negative protein expression,
pharmacologic inhibitors, kinase assays and CDK4 deficient cells, we demonstrate
the ability of CDK4 to phosphorylate c-Jun. Additionally, the activity of AP-1,
a ubiquitous transcription factor containing phosphorylated c-Jun as a subunit,
was inhibited by abrogating CDK4. Surprisingly, the regulation of c-Jun
phosphorylation by CDK4 occurred in non-dividing cells, indicating that this
pathway is utilized for cell functions that are independent of proliferation.
Our studies identify a new substrate for CDK4 and suggest a mechanism by which
CDKs can regulate multiple cellular activation functions, not all of which are
directly associated with cell cycle progression. These findings point to
additional roles of CDKs in cell signaling and reveal potential implications for
therapeutic manipulations of this kinase pathway
- …