159 research outputs found

    High Velocity Impact Analysis Of Glass Epoxy-Laminated Plates

    Get PDF
    An experimental investigation on the effect of thickness on fiberglass reinforced epoxy matrix which is subjected to impact loading was conducted. The composite structure consists of Type C-glass/Epoxy 200 g/m2 and Type C-glass/Epoxy 600 g/m2. The material is used as a composite reinforcement in high performance applications since it provides certain advantages of specific high strength and stiffness as compared to metallic materials. This study investigates the mechanical properties, damage characterization and impact resistance of both composite structures, subjected to the changes of impact velocity and thickness. For mechanical properties testing, the Universal Testing Machine was used while for the high velocity impact, a compressed gas gun equipped with a velocity measurement system was used.From the results, it is found that the mechanical properties, damage characterization and impact resistance of Type C-glass/Epoxy 600 g/m2 posses better toughness, modulus and penetration compared to Type C-glass/Epoxy 200 g/m2. A general trend was observed on the overall ballistic test results which indicated that as the plate specimen thickness continues to increase, the damage at the lower skin decreases and could not be seen. Moreover, it is also found that, as the plate thickness increases, the maximum impact load and impact energy increases relatively. Impact damage was found to be in the form of perforation, fiber breakage and matrix cracking. Results from this research can be used as a reference in designing structural and body armour applications in developing a better understanding of test methods used to characterize impact behaviour

    The study of impact behaviour of two types of glass fibre reinforced polymer (GFRP) subjected to low velocity impact

    Get PDF
    The aim of this work is to study the behaviour of two types of composite material when subjected to impacts at different energy levels under low velocity impact events. The composite material used in this study was Glass Fibre Reinforced Polymer (GFRP) which was C-type/600 g/m2 and E-type/600 g/m2. This material was fabricated to produce laminated plate specimens with a dimension of 100 mm 150 mm. Each specimen had 10 layers of GFRP woven roving plies. The low velocity impact test was performed using an IM10 Drop Weight Impact Tester with a 10 mm hemispherical striker cap. The impact energy was set to 14, 28, 42 and 56 joules with velocity ranging from 1.73 m/s to 3.52 m/s. The relationships of impact energy with impact force, displacement and energy absorbed are presented. The comparison and behaviour between the two types of GFRP are discussed

    Simulation of low velocity impact on composite hemispherical shell

    Get PDF
    Impact simulation with finite element analysis is an appropriate manner to reduce the cost and time taken to carry out an experimental testing on a component. In this study, the impact behavior of the composite hemispherical shell induced by low velocity impact is simulated in ABAQUS software with finite element method. To predict the responses of Kevlar fabric/polyester, glass fabric/polyester and carbon fabric/polyester in the form of a hemisphere, once as one layer and then as a three-layered composite under applied force by an anvil. The sequences of layers are changed, to investigate and compare the occurred alternations in the amount of energy absorption, impact force and specific energy absorption (SEA). The comparison of results showed that the highest and the lowest quantity of energy absorption and SEA belong to Carbon/Glass/Kevlar (CGK) and Kevlar/Carbon/Glass (KCG) respectively

    A novel approach for detecting, localising and characterising damages in glass fibre reinforced polymer (GFRP) using the drop weight impact tester

    Get PDF
    The aim of this work is to conduct an experimental study of a low velocity impact test by changes in the type of materials, number of layers and impact energy level using an IM10 Drop Weight Impact Tester. The composite material used in this study was Glass Fibre Reinforced Polymer (GFRP) in two forms:Type C-glass 600 g/m2 and Type E-glass 600 g/m2. These materials were fabricated using a hand lay-up technique to produce laminated plate specimens with a dimension of 100 mm × 150 mm. Each type of specimen was fabricated into 10 layers, 12 layers and 14 layers of GFRP woven roving plies. The low velocity impact test was performed using an IM10 Drop Weight Impact Tester with 10 mm hemispherical striker cap. The impact energy was set to 14, 28, 42 and 56 Joule with velocity ranging from 1.73 m/s to 3.52 m/s for 10 layer specimens and 7, 14, 21, 28, 35, 42, 49 and 56 Joule for 12 layer and 14 layer specimens. The relationships between impact energy and impact force, displacement, damage area and energy absorbed are presented. The comparison and behaviour between the two types of GFRP is discussed

    Impact characterisation of glass fibre-reinforced polymer (GFRP) Type C-600 and E-800 using a single stage gas gun (SSGG)

    Get PDF
    This paper presents experimental findings derived from high velocity impact tests on woven-roving Glass Fibre-Reinforced Polymers (GFRP) Type E-800 g/m² and Type C-600 g/m². The effects on specimen thickness, projectile shape and gas gun pressure were investigated. As the gas gun pressure increases, there is a proportional increase in the projectile kinetic energy, the projectile initial velocity, the maximum force exerted on the specimens and in energy absorption upon impact. During the test, the shape of the projectile, the target thickness and the gas gun pressure significantly affected the impact performance of the GFRP. From the experiment, it was found that GFRP Type E-800 g/m² is stronger and more impact resistant compared with GFRP Type C-600 g/m², due to the fact that E-glass materials have higher fibre volume and density and overall better mechanical properties than C-glass fibres. Therefore, GFRP Type E-800 g/m² composites should be considered for applications in load and impact bearing aircraft structures

    Impact characterisation of glass fibre reinforced polymer (GFRP) type C-600 and E-800 using a drop weight machine

    Get PDF
    In this study, the impact responses for GFRP type C-600 and GFRP type E-800 have been investigated. Impact tests were performed using a drop weight tester, IMATEK IM10T with eight different levels of energy ranging from 6 J to 48 J. The variation of impact characteristics such as peak displacement, peak force and energy absorbed versus impact energy and damaged area were investigated. From the experimental studies, it can be concluded that for each type of GFRP, the impact energy showed excellent correlation with the impact characterization and the damaged area. The difference in the thickness and mechanical properties for both types of GFRP do affect the impact characterization and the damaged area of the specimens tested. It can be concluded that GFRP type E-800 is higher in strength compared to GFRP type C-600

    A novel method for detecting and characterizing low velocity impact (LVI) in commercial composite

    Get PDF
    This paper presents low velocity impact testing on fibreglass reinforced polymer. The materials used in this experiment are Type C-glass/Epoxy 600 g/m2 and Type E-glass/Epoxy 800 g/m2 . The materials were fabricated into 10 layer laminates. The drop weight low velocity impact tests were performed on 101.6 mm × 152.4 mm (4 in × 6 in) laminated plates using Imatek IM10 ITS Drop Weight Impact Tester in accordance with the Boeing Specification Support Standard Boeing BSS 7260 with variation in incident impact energy. As incident impact energy increases, the damage area also increases. Several damage modes occurred from delamination to matrix cracking. The 10-ply Type C-glass/Epoxy 600 g/m2 laminate exhibited more severe matrix damage than the 10-ply Type E-glass/Epoxy 800 g/m2 laminate at the same impact energy level. From this experiment, 10-ply Type E-glass/Epoxy 800 g/m2 is recommended as the material for low velocity impact, as it has a higher impact resistance compared to 10-ply Type C-glass/Epoxy 600 g/m2

    An experimental study of low velocity impact (LVI) on fibre glass reinforced polymer (FGRP)

    Get PDF
    This paper investigates the low velocity impact load and absorbed energy corresponding to the incident impact level of Type C-glass/Epoxy 600 g/m² and Type E-glass/Epoxy 800 g/m² composites. A number of low velocity impact test were performed under various incident impact energies ranging from approximately 5 to 20 J using a drop weight impact tester. Results showed that peak impact load and peak energy increase with an increase in incident impact energy. The absorbed energy increases with an increase in incident impact energy. 10-ply Type E-glass/Epoxy 800 g/m² has a higher impact resistance compared to 10-ply Type C-glass/Epoxy 600 g/m². Therefore, Type E-glass/Epoxy 800 g/m² is recommended as the material for low velocity impact

    The effect of stacking sequence on tensile properties of hybrid composite materials

    Get PDF
    Hybrid composite materials have found extensive applications in many areas such as in the medical field, aerospace, automobile and in the sport industry, between others. The effect of stacking sequence of glass/carbon fibers on the tensile behavior of the hybrid composites was investigated in this paper. Five groups of hybrid composite laminates were produced using various proportions of woven E-glass/carbon fibers reinforced epoxy matrix and subjected to tensile tests. The results showed that the hybrid laminations that consist of three layers of carbon and two layers of glass provided the best tensile properties. Group D showed the maximum force results (9255.7 N) and maximum tensile stress (382.7 Mpa). For three or less number of layers in the composites, when using carbon fiber layers more than glass fiber layers, the tensile strength was found similar. Otherwise, the tensile load increased with increasing number of layers. Moreover, for the tensile force and the stress of the hybrid composite samples that consisted of three or more layers, a significant effect of the stacking sequence was noticed

    A review on detecting and characterizing damage mechanisms of synthetic and natural fiber based composites

    Get PDF
    The damage to composite structures caused by impact events is one of the most critical behaviors that inhibit the widespread application of composite material. As the application of synthetic and natural based composite material increases over time, improved knowledge of composite damage in areas such as automotive and aerospace is exceedingly necessary. It is important to study and understand the damage mechanism of composite structures to produce effective designs. The failure caused by damage in structural design can result in unintended consequences. Extensive research has been conducted to detect impact damage in synthetic fiber. There are various methods to identify and characterize the damage. This article provides a comprehensive review of recent literature focusing on the broader scope of impact damage and incipient thermal damage of synthetic and natural fiber-based composites. In this report, the available research is reviewed by considering all aspects related to damage in composite materials, particularly the work done on detecting and characterizing damage mechanisms of synthetic and natural fiber-based composites
    corecore