6 research outputs found

    Autoregulation of the Escherichia coli melR promoter: repression involves four molecules of MelR

    Get PDF
    The Escherichia coli MelR protein is a transcription activator that autoregulates its own promoter by repressing transcription initiation. Optimal repression requires MelR binding to a site that overlaps the melR transcription start point and to upstream sites. In this work, we have investigated the different determinants needed for optimal repression and their spatial requirements. We show that repression requires a complex involving four DNA-bound MelR molecules, and that the global CRP regulator plays little or no role

    The Escherichia coli cAMP receptor protein bound at a single target can activate transcription initiation at divergent promoters:a systematic study that exploits new promoter probe plasmids

    No full text
    We report the first detailed quantitative study of divergent promoters dependent on the Escherichia coli cAMP receptor protein (CRP), a factor known to activate transcription initiation at target promoters by making direct interactions with the RNA polymerase holoenzyme. In this work, we show that CRP bound at a single target site is able to activate transcription at two divergently organized promoters. Experiments using promoter probe plasmids, designed to study divergent promoters in vivo and in vitro, show that the divergent promoters function independently. Further in vitro experiments show that two holo RNA polymerase molecules cannot be accommodated simultaneously at the divergent promoters

    Mutational Analysis of the Escherichia coli melR Gene Suggests a Two-State Concerted Model To Explain Transcriptional Activation and Repression in the Melibiose Operon

    No full text
    Transcription of the Escherichia coli melAB operon is regulated by the MelR protein, an AraC family member whose activity is modulated by the binding of melibiose. In the absence of melibiose, MelR is unable to activate the melAB promoter but autoregulates its own expression by repressing the melR promoter. Melibiose triggers MelR-dependent activation of the melAB promoter and relieves MelR-dependent repression of the melR promoter. Twenty-nine single amino acid substitutions in MelR that result in partial melibiose-independent activation of the melAB promoter have been identified. Combinations of different substitutions result in almost complete melibiose-independent activation of the melAB promoter. MelR carrying each of the single substitutions is less able to repress the melR promoter, while MelR carrying some combinations of substitutions is completely unable to repress the melR promoter. These results argue that different conformational states of MelR are responsible for activation of the melAB promoter and repression of the melR promoter. Supporting evidence for this is provided by the isolation of substitutions in MelR that block melibiose-dependent activation of the melAB promoter while not changing melibiose-independent repression of the melR promoter. Additional experiments with a bacterial two-hybrid system suggest that interactions between MelR subunits differ according to the two conformational states
    corecore