9 research outputs found

    Synthesis, 3D-QSAR, and Molecular Modeling Studies of Triazole Bearing Compounds as a Promising Scaffold for Cyclooxygenase-2 Inhibition

    No full text
    Targeting of cyclooxygenase-2 (COX-2) has emerged as a powerful tool for therapeutic intervention because the overexpression of this enzyme is synonymous with inflammation, cancer, and neurodegenerative diseases. Herein, a new series of 1,2,4-triazole Schiff bases scaffold with aryl and heteroaryl systems 9a–12d were designed, synthesized, structurally elucidated, and biologically evaluated as a potent COX-2 blocker. The rationale beyond the current study is to increase the molecule bulkiness allowing a selective binding to the unique hydrophobic pocket of COX-2. Among the triazole–thiazole hybrids, the one with the para-methoxy moiety linked to a phenyl ring 12d showed the highest In vitro selectivity by COX-2 inhibition assay (IC50 of 0.04 μM) and in situ anti-inflammatory activity when evaluated using the protein denaturation assay (IC50 of 0.88 μM) in comparison with commercially available selective COX-2 inhibitor, Celecoxib (IC50 of 0.05 μM). Towards the COX-2 selectivity, ligand-based three dimensional quantitative structures activity relationship (3D-QSAR) employing atomic-based and field-based approaches were performed and resulted in the necessity of triazole and thiazole/oxazole scaffolds for COX-2 blocking. Furthermore, the molecular modeling study indicated a high selectivity and promising affinity of our prepared compounds to COX-2, especially the hydrophobic pocket and the mouth of the active site holding hydrogen-bonding, hydrophobic, and electrostatic interactions. In Silico absorption, delivery, metabolism, and excretion (ADME) predictions showed that all the pharmacokinetic and physicochemical features are within the appropriate range for human use

    Discovery of Potent Dual EGFR/HER2 Inhibitors Based on Thiophene Scaffold Targeting H1299 Lung Cancer Cell Line

    No full text
    Dual targeting of epidermal growth factor receptor (EGFR) and human EGFR-related receptor 2 (HER2) is a proven approach for the treatment of lung cancer. With the aim of discovering effective dual EGFR/HER2 inhibitors targeting non-small cell lung cancer cell line H1299, three series of thieno[2,3-d][1,2,3]triazine and acetamide derivatives were designed, synthesized, and biologically evaluated. The synthesized compounds displayed IC50 values ranging from 12 to 54 nM against H1299, which were superior to that of gefitinib (2) at 40 µM. Of the synthesized compounds, 2-(1H-pyrazolo[3,4-b]pyridin-3-ylamino)-N-(3-cyano4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)acetamide (21a) achieved the highest in vitro cytotoxic activity against H1299, with an IC50 value of 12.5 nM in situ, and 0.47 and 0.14 nM against EGFR and HER2, respectively, values comparable to the IC50 of the approved drug imatinib (1). Our synthesized compounds were promising, demonstrating high selectivity and affinity for EGFR/HER2, especially the hinge region forming a hydrophobic pocket, which was mediated by hydrogen bonding as well as hydrophobic and electrostatic interactions, as indicated by molecular modeling. Moreover, the designed compounds showed good affinity for T790M EGFR, one of the main mutants resulting in acquired drug resistance. Furthermore, both pharmacokinetic and physicochemical properties of the designed compounds were within the appropriate range for human usage as predicted by the in Silico ADME study. The designed compound (21a) might serve as an encouraging lead compound for the discovery of promising anti-lung cancer agents targeting EGFR/HER2

    New Antiproliferative Triflavanone from Thymelaea hirsuta—Isolation, Structure Elucidation and Molecular Docking Studies

    No full text
    In this study isolates from Thymelaea hirsuta, a wild plant from the Sinai Peninsula of Egypt, were identified and their selective cytotoxicity levels were evaluated. Phytochemical examination of the ethyl acetate (EtOAc) fraction of the methanolic (MeOH) extract of the plant led to the isolation of a new triflavanone compound (1), in addition to the isolation of nine previously reported compounds. These included five dicoumarinyl ethers found in Thymelaea: daphnoretin methyl ether (2), rutamontine (3), neodaphnoretin (4), acetyldaphnoretin (5), and edgeworthin (6); two flavonoids: genkwanin (7) and trans-tiliroside (8); p-hydroxy benzoic acid (9) and β sitosterol glucoside (10). Eight of the isolated compounds were tested for in vitro cytotoxicity against Vero and HepG2 cell lines using a sulforhodamine-B (SRB) assay. Compounds 1, 2 and 5 exhibited remarkable cytotoxic activities against HepG2 cells, with IC50 values of 8.6, 12.3 and 9.4 μM, respectively, yet these compounds exhibited non-toxic activities against the Vero cells. Additionally, compound 1 further exhibited promising cytotoxic activity against both MCF-7 and HCT-116 cells, with IC50 values of 4.26 and 9.6 μM, respectively. Compound 1 significantly stimulated apoptotic breast cancer cell death, resulting in a 14.97-fold increase and arresting 40.57% of the cell population at the Pre-G1 stage of the cell cycle. Finally, its apoptosis-inducing activity was further validated through activation of BAX and caspase-9, and inhibition of BCL2 levels. In silico molecular docking experiments revealed a good binding mode profile of the isolates towards Ras activation/pathway mitogen-activated protein kinase (Ras/MAPK); a common molecular pathway in the development and progression of liver tumors

    New Antiproliferative Triflavanone from <i>Thymelaea hirsuta</i>—Isolation, Structure Elucidation and Molecular Docking Studies

    No full text
    In this study isolates from Thymelaea hirsuta, a wild plant from the Sinai Peninsula of Egypt, were identified and their selective cytotoxicity levels were evaluated. Phytochemical examination of the ethyl acetate (EtOAc) fraction of the methanolic (MeOH) extract of the plant led to the isolation of a new triflavanone compound (1), in addition to the isolation of nine previously reported compounds. These included five dicoumarinyl ethers found in Thymelaea: daphnoretin methyl ether (2), rutamontine (3), neodaphnoretin (4), acetyldaphnoretin (5), and edgeworthin (6); two flavonoids: genkwanin (7) and trans-tiliroside (8); p-hydroxy benzoic acid (9) and β sitosterol glucoside (10). Eight of the isolated compounds were tested for in vitro cytotoxicity against Vero and HepG2 cell lines using a sulforhodamine-B (SRB) assay. Compounds 1, 2 and 5 exhibited remarkable cytotoxic activities against HepG2 cells, with IC50 values of 8.6, 12.3 and 9.4 μM, respectively, yet these compounds exhibited non-toxic activities against the Vero cells. Additionally, compound 1 further exhibited promising cytotoxic activity against both MCF-7 and HCT-116 cells, with IC50 values of 4.26 and 9.6 μM, respectively. Compound 1 significantly stimulated apoptotic breast cancer cell death, resulting in a 14.97-fold increase and arresting 40.57% of the cell population at the Pre-G1 stage of the cell cycle. Finally, its apoptosis-inducing activity was further validated through activation of BAX and caspase-9, and inhibition of BCL2 levels. In silico molecular docking experiments revealed a good binding mode profile of the isolates towards Ras activation/pathway mitogen-activated protein kinase (Ras/MAPK); a common molecular pathway in the development and progression of liver tumors
    corecore