37 research outputs found

    Higher ethical objective (Maqasid al-Shari'ah) augmented framework for Islamic banks : assessing the ethical performance and exploring its determinants.

    Get PDF
    This study utilises higher objectives postulated in Islamic moral economy or the maqasid al-Shari’ah theoretical framework’s novel approach in evaluating the ethical, social, environmental and financial performance of Islamic banks. Maqasid al-Shari’ah is interpreted as achieving social good as a consequence in addition to well-being and, hence, it goes beyond traditional (voluntary) social responsibility. This study also explores the major determinants that affect maqasid performance as expressed through disclosure analysis. By expanding the traditional maqasid al-Shari’ah,, we develop a comprehensive evaluation framework in the form of a maqasid index, which is subjected to a rigorous disclosure analysis. Furthermore, in identifying the main determinants of the maqasid disclosure performance, panel data analysis is used by including several key variables alongside political and socio-economic environment, ownership structures, and corporate and Shari’ah governance-related factors. The sample includes 33 full-fledged Islamic banks from 12 countries for the period of 2008–2016. The findings show that although during the nine-year period the disclosure of maqasid performance of the sampled Islamic banks has improved, this is still short of ‘best practices’. Through panel data analysis, this study finds that the Muslim population indicator, CEO duality, Shari’ah governance, and leverage variables positively impact the disclosure of maqasid performance. However, the effect of GDP, financial development and human development index of the country, its political and civil rights, institutional ownership, and a higher share of independent directors have an overall negative impact on the maqasid performance. The findings reported in this study identify complex and multi-faceted relations between external market realities, corporate and Shari’ah governance mechanisms, and maqasid performance

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Study of high-transverse-momentum Higgs boson production in association with a vector boson in the qqbb final state with the ATLAS detector

    Get PDF
    This Letter presents the first study of Higgs boson production in association with a vector boson ( V = W or Z ) in the fully hadronic q q b b final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at √ s = 13     TeV and corresponding to an integrated luminosity of 137     fb − 1 . The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting b -tagging properties are used to identify jets consistent with Higgs bosons decaying into b ¯ b . Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The V H production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250–450, 450–650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be μ = 1.4 + 1.0 − 0.9 and the corresponding cross section is 3.1 ± 1.3 ( stat ) + 1.8 − 1.4 ( syst )     pb

    Measurement of the centrality dependence of the dijet yield in p+Pb collisions at √sNN = 8.16 TeV with the ATLAS detector

    Get PDF
    ATLAS measured the centrality dependence of the dijet yield using 165     nb − 1 of p + Pb data collected at √ s NN = 8.16     TeV in 2016. The event centrality, which reflects the p + Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter. The central-to-peripheral ratio of the scaled dijet yields, R CP , is evaluated, and the results are presented as a function of variables that reflect the kinematics of the initial hard parton scattering process. The R CP shows a scaling with the Bjorken x of the parton originating from the proton, x p , while no such trend is observed as a function of x Pb . This analysis provides unique input to understanding the role of small proton spatial configurations in p + Pb collisions by covering parton momentum fractions from the valence region down to x p ∼ 10 − 3 and x Pb ∼ 4 × 10 − 4

    Search for new phenomena with top-quark pairs and large missing transverse momentum using 140 fb−1 of pp collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search is conducted for new phenomena in events with a top quark pair and large missing transverse momentum, where the top quark pair is reconstructed in final states with one isolated electron or muon and multiple jets. The search is performed using the Large Hadron Collider proton-proton collision data sample at a centre-of-mass energy of √s = 13 TeV recorded by the ATLAS detector that corresponds to an integrated luminosity of 140 fb−1. An analysis based on neural network classifiers is optimised to search for directly produced pairs of supersymmetric partners of the top quark (stop), and to search for spin-0 mediators, produced in association with a pair of top quarks, that decay into dark-matter particles. In the stop search, the analysis is designed to target models in which the mass difference between the stop and the neutralino from the stop decay is close to the top quark mass. This new search is combined with previously published searches in final states with different lepton multiplicities. No significant excess above the Standard Model background is observed, and limits at 95% confidence level are set. Models with neutralinos with masses up to 570 GeV are excluded, while for small neutralino masses models are excluded for stop masses up to 1230 GeV. Scalar (pseudoscalar) dark matter mediator masses as large as 350 (370) GeV are excluded when the coupling strengths of the mediator to Standard Model and dark-matter particles are both set to one. At lower mediator masses, models with production cross-sections as small as 0.15 (0.16) times the nominal predictions are excluded. Results of this search are also used to set constraints on effective four-fermion contact interactions between top quarks and neutrinos

    Search for non-resonant Higgs boson pair production in the 2b + 2ℓ + ETmiss final state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for non-resonant Higgs boson pair (HH) production is presented, in which one of the Higgs bosons decays to a b-quark pair (bb¯) and the other decays to WW*, ZZ*, or τ+τ−, with in each case a final state with ℓ+ℓ−+ neutrinos (ℓ = e, μ). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb−1, are used in this analysis. Events are selected to have exactly two b-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the HH events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter κλ and the quadrilinear coupling parameter κ2V are each separately constrained by this analysis to be within the ranges [−6.2, 13.3] and [−0.17, 2.4], respectively, at 95% confidence level, when all other parameters are fixed

    Search for resonant production of dark quarks in the dijet final state with the ATLAS detector

    Get PDF
    This paper presents a search for a new Z′ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at √s = 13 TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95% confidence-level upper limits on the production cross-section times branching ratio of the Z′ to dark quarks as a function of the Z′ mass for various dark-quark scenarios

    Measurement of the tt¯ cross section and its ratio to the Z production cross section using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive top-quark-pair production cross section σtt¯ and its ratio to the Z-boson production cross section have been measured in proton–proton collisions at √s = 13.6 TeV, using 29 fb−1 of data collected in 2022 with the ATLAS experiment at the Large Hadron Collider. Using events with an opposite-charge electron-muon pair and b-tagged jets, and assuming Standard Model decays, the top-quark-pair production cross section is measured to be σtt¯=850±3(stat.)±18(syst.)±20(lumi.) pb. The ratio of the tt¯ and the Z-boson production cross sections is also measured, where the Z-boson contribution is determined for inclusive e+e− and μ+μ− events in a fiducial phase space. The relative uncertainty on the ratio is reduced compared to the tt¯ cross section, thanks to the cancellation of several systematic uncertainties. The result for the ratio, Rtt¯/Z=1.145±0.003(stat.)±0.021(syst.)±0.002(lumi.) is consistent with the Standard Model prediction using the PDF4LHC21 PDF set
    corecore