25,173 research outputs found
Theory of Coupled Resonator Optical Waveguides (CROW) Exhibiting High Order Exceptional Points of Degeneracy
We present a novel approach and a theoretical framework for generating high
order exceptional points of degeneracy (EPD) in photonic structures based on
periodic coupled resonators optical waveguides (CROWs). Such EPDs involve the
coalescence of Floquet-Bloch eigenwaves in CROWs, without the presence of gain
and loss, which is in contrast to the requirement of Parity-Time (PT) symmetry
to develop exceptional points based on gain and loss balance. The EPDs arise
here by introducing symmetry breaking in a conventional chain of coupled
resonators through coupling the chain of resonators to an adjacent uniform
optical waveguide, which leads to unique modal characteristics that cannot be
realized in conventional CROWs. Such remarkable characteristics include high
quality factors (Q-factor) and strong field enhancement, even without any
mirrors at the two ends of a cavity. We show for the first time the capability
of CROWs to exhibit EPDs of various order; including the degenerate band edge
(DBE) and the stationary inflection point (SIP). The proposed CROW of finite
length shows enhanced quality factor when operating near the DBE, and the
Q-factor exhibits an anomalous scaling with the CROW's length. We develop the
theory of EPDs in such unconventional CROW using coupled-wave equations, and we
derive an analytical expression for the dispersion relation. The proposed
unconventional CROW concepts have various potential applications including
Q-switching, nonlinear devices, lasers, and extremely sensitive sensors.Comment: 16 pages, 11 figure
Multi-Robot Transfer Learning: A Dynamical System Perspective
Multi-robot transfer learning allows a robot to use data generated by a
second, similar robot to improve its own behavior. The potential advantages are
reducing the time of training and the unavoidable risks that exist during the
training phase. Transfer learning algorithms aim to find an optimal transfer
map between different robots. In this paper, we investigate, through a
theoretical study of single-input single-output (SISO) systems, the properties
of such optimal transfer maps. We first show that the optimal transfer learning
map is, in general, a dynamic system. The main contribution of the paper is to
provide an algorithm for determining the properties of this optimal dynamic map
including its order and regressors (i.e., the variables it depends on). The
proposed algorithm does not require detailed knowledge of the robots' dynamics,
but relies on basic system properties easily obtainable through simple
experimental tests. We validate the proposed algorithm experimentally through
an example of transfer learning between two different quadrotor platforms.
Experimental results show that an optimal dynamic map, with correct properties
obtained from our proposed algorithm, achieves 60-70% reduction of transfer
learning error compared to the cases when the data is directly transferred or
transferred using an optimal static map.Comment: 7 pages, 6 figures, accepted at the 2017 IEEE/RSJ International
Conference on Intelligent Robots and System
Optimizing Service Differentiation Scheme with Sized-based Queue Management in DiffServ Networks
In this paper we introduced Modified Sized-based Queue Management as a
dropping scheme that aims to fairly prioritize and allocate more service to
VoIP traffic over bulk data like FTP as the former one usually has small packet
size with less impact to the network congestion. In the same time, we want to
guarantee that this prioritization is fair enough for both traffic types. On
the other hand we study the total link delay over the congestive link with the
attempt to alleviate this congestion as much as possible at the by function of
early congestion notification. Our M-SQM scheme has been evaluated with NS2
experiments to measure the packets received from both and total link-delay for
different traffic. The performance evaluation results of M-SQM have been
validated and graphically compared with the performance of other three legacy
AQMs (RED, RIO, and PI). It is depicted that our M-SQM outperformed these AQMs
in providing QoS level of service differentiation.Comment: 10 pages, 9 figures, 1 table, Submitted to Journal of
Telecommunication
On the Construction of Safe Controllable Regions for Affine Systems with Applications to Robotics
This paper studies the problem of constructing in-block controllable (IBC)
regions for affine systems. That is, we are concerned with constructing regions
in the state space of affine systems such that all the states in the interior
of the region are mutually accessible through the region's interior by applying
uniformly bounded inputs. We first show that existing results for checking
in-block controllability on given polytopic regions cannot be easily extended
to address the question of constructing IBC regions. We then explore the
geometry of the problem to provide a computationally efficient algorithm for
constructing IBC regions. We also prove the soundness of the algorithm. We then
use the proposed algorithm to construct safe speed profiles for different
robotic systems, including fully-actuated robots, ground robots modeled as
unicycles with acceleration limits, and unmanned aerial vehicles (UAVs).
Finally, we present several experimental results on UAVs to verify the
effectiveness of the proposed algorithm. For instance, we use the proposed
algorithm for real-time collision avoidance for UAVs.Comment: 17 pages, 18 figures, under review for publication in Automatic
Design of time delayed chaotic circuit with threshold controller
A novel time delayed chaotic oscillator exhibiting mono- and double scroll
complex chaotic attractors is designed. This circuit consists of only a few
operational amplifiers and diodes and employs a threshold controller for
flexibility. It efficiently implements a piecewise linear function. The control
of piecewise linear function facilitates controlling the shape of the
attractors. This is demonstrated by constructing the phase portraits of the
attractors through numerical simulations and hardware experiments. Based on
these studies, we find that this circuit can produce multi-scroll chaotic
attractors by just introducing more number of threshold values.Comment: 21 pages, 12 figures; Submitted to IJB
- …