4,236 research outputs found

    Human physiological limitations during prolonged multi-tasks: An aiding tool.

    Get PDF

    The effects of road transportation on some physiological stress measures in goats

    Get PDF
    A study to assess the physiological stress responses in goats that were subjected to road transportation was carried out using 10 Kacang crossbred does. Five does were transported in the morning with another five transported in the afternoon covering a distance of 46 km in an open-truck at an average speed of 55 km/h. Immediately following the road transportation, there were dramatic increases in neutrophi:lymphocyte ratios and plasma glucose concentrations but plasma cholesterol concentrations and body temperature were not affected. The neutrophil:lymphocyte ratios and plasma glucose concentrations appear to be reliable indicators of stress in goats

    The Impact of Financial Risks on the Firms’ Performance

    Get PDF
    Firms are exposed to a variety of risks including credit risk, liquidity risk, foreign exchange risk, market risk and interest rate risk. An efficient risk management system is needed in time in order to control these risks. Managing risk is one of the basic tasks to be done, once it has been identified and known. The risk and return are directly related to each other, which means that increasing one will subsequently increase the other and vice versa. Financial risks have a great impact on firm’s performance. The study also assessed the current risk management practices of the firms and linked them with the firms’ financial performance. The findings confirm whether financial risks can be contained or managed in order for firms to achieve profit maximization for its shareholders. Keywords: Financial Risk; Firm’s Performance; Interest rate parity; Liquidity gap; Liquidity risk; Risk Management

    Electricity and Water Cogeneration Utilizing Aluminium Furnaces Waste Heat Integrating Thermal Storage Organic Rankine Cycle

    Get PDF
    High energy-intensive industries, including steel, chemicals, cement, and aluminium, contribute to about 75% of the industrial emissions of carbon dioxide globally and expelling large amounts of unrecovered waste heat into the atmosphere. Yet, there has been a challenge of studies that are conducted on recovering waste heat in the aluminium industry, especially in cast-house facilities, due to technical difficulties such as energy fluctuations in mass flow rate and temperature. In this study, the waste heat to power system is designed to generate power and freshwater in a cast-house facility with 18 furnaces by evaluating three methods in which the temporal waste heat from holding furnaces can be damped and exploited. These methods are: (1) implementing a temporal air injection, (2) optimising furnaces operation time shift, and (3) integrating sensible thermal heat storage. Organic Rankine Cycle is used for the waste heat to power conversion. The appropriate thermal energy storage design and a thermodynamic model of an Organic Rankine Cycle are investigated using temporal flue gas data that are collected on site from three furnaces. Reverse Osmosis technology is applied to produce water using the generated electricity. Results show that sensible heat thermal energy storage is the most suitable technology for damping the fluctuations of waste heat. By utilising waste heat from 18 remelting furnaces, a net power output of 323 kW can be produced to operate a Reverse Osmosis plant supplying 2419 m3 of fresh water daily, saving up to 2000 metric tons of carbon dioxide emissions annually. This study gives a comprehensive approach to deal with temporal waste heat in aluminium furnaces for smooth cogeneration

    Feasibility Study for Water-Electricity Cogeneration Using Integrated System of Concentrated Solar Power and Biofuel as Renewable Energy

    Get PDF
    Although Concentrated Solar Power (CSP) is one of the promising renewable energy technologies, several technical and economic challenges should be addressed. One of the major issues associated with Concentrated Solar Power technologies is the reliability limitation of the plant in the stand-alone configuration. Therefore, Concentrated Solar Power systems can be integrated with either thermal energy storage (TES) or a fossil-fuelled power assist FFPA). However, initial and maintenance costs and emission production are the main challenges for the developing countries. Integrating biofuel/biogas with CSP increases the renewability while solar irradiation is in absent. The paper main objective is to perform a feasibility study of integrating a biofuel based gas turbine power units in a Concentrated Solar Power plant for electricity and water cogeneration. The study includes the thermodynamics analysis and assessment of three biofuels, namely, Jatropha oil, castor oil, and palm oil. In addition, a cost lifecycle, sensitivity, and Monte Carlo analyses were performed. The results showed that Castor oil had a better performance in terms of efficiency and carbon dioxide emissions with a maximum daily freshwater production of 181,000 m3/day. The proposed integration resulted in a levelized cost of water that is lower than the water tariff in the UAE by $1.39/m3 with a payback period of 5 years

    Spatiotemporal Mapping and Monitoring of Mangrove Forests Changes From 1990 to 2019 in the Northern Emirates, UAE Using Random Forest, Kernel Logistic Regression and Naive Bayes Tree Models

    Get PDF
    © Copyright © 2020 Elmahdy, Ali, Mohamed, Howari, Abouleish and Simonet. Mangrove forests are acting as a green lung for the coastal cities of the United Arab Emirates, providing a habitat for wildlife, storing blue carbon in sediment and protecting shoreline. Thus, the first step toward conservation and a better understanding of the ecological setting of mangroves is mapping and monitoring mangrove extent over multiple spatial scales. This study aims to develop a novel low-cost remote sensing approach for spatiotemporal mapping and monitoring mangrove forest extent in the northern part of the United Arab Emirates. The approach was developed based on random forest (RF), Kernel logistic regression (KLR), and Naive Bayes Tree machine learning algorithms which use multitemporal Landsat images. Our results of accuracy metrics include accuracy, precision, and recall, F1 score revealed that RF outperformed the KLR and NB with an F1 score of more than 0.90. Each pair of produced mangrove maps (1990–2000, 2000–2010, 2010–2019, and 1990–2019) was used to image difference algorithm to monitor mangrove extent by applying a threshold ranges from +1 to −1. Our results are of great importance to the ecological and research community. The new maps presented in this study will be a good reference and a useful source for the coastal management organization

    Nd:YAG laser welding of stainless steel 304 for photonics device packaging

    Get PDF
    Although pulsed Nd:YAG laser welding has been widely used in microelectronics and photonics packaging industry, a full understanding of various phenomena involved is still a matter of trials and speculations. In this research, an ultra compact pulsed Nd:YAG laser with wavelength of 1.064 µm has been used to produce a spot weld on stainless steel 304. The principal objective of this research is to examine the effects of laser welding parameters such as laser beam peak powers, pulse durations, incident angles, focus point positions and number of shots on the weld dimensions: penetration depth and bead width. The ratio of the penetration depth to the bead width is considered as one of the most critical parameters to determine the weld quality. It is found that the penetration depth and bead width increase when the laser beam peak power, pulse duration and number of shot increase. In contrast, the penetration depth decreases when the laser beam defocus position and incident angle increase. This is due to the reduction of the laser beam intensity causing by the widening of the laser spot size. These experimental results provide a reference on an optimal laser welding operations for a reliable photonics device packaging. The results obtained shows that stainless steel 304 is suitable to be used as a base material for photonics device packaging employing Nd:YAG laser welding technique

    Chilled Water Storage Feasibility with District Cooling Chiller in Tropical Environment

    Get PDF
    The difficulties of efficiently operating a chiller cooling system are manifest in the high-energy consumption under partial-cooling loads. The performance of a chiller cooling system declines when operating away from the optimal design conditions, which is typically 75% of chiller capacity. One pathway has been found to overcome this problem using multiple smaller chillers within the same chiller plant, accompanied by a smart control system that is designed and constructed based on the cooling demand profile. Thermal energy storage integration with chiller cooling system is proposed to shave the cooling peak demand. This can be achieved by storing chilled water during the lower electricity-tariff period by the thermal energy storage system, which will then be discharged during the higher tariff-rate, thus, aiming for sustainable operating cost. The present paper studies the feasibility of sensible thermal energy storage to be integrated with two chillers, of 30-ton capacity each, under hot-and-humid climates. A computational model validated with experimental results is developed for three chiller cooling system case scenarios. The smart control scenario, as well as the thermal energy storage scenario results, showed great potential for energy and electricity cost saving. In addition, the carbon dioxide emissions reduction is calculated based on the amount of energy saving
    corecore