108 research outputs found

    Development of nanoemulsion incorporated with Hibiscus sabdariffa for cosmeceutical application

    Get PDF
    Hibiscus sabdariffa (HS) has been reported to possess a crucial content of bioactive compounds, such as phenolic acids and flavonoids, therefore, HS was recognized as a source of antioxidants. Due to that, the development of nanoemulsion incorporated with HS appears promising for cosmeceutical application. This study is focused on the formulation of oil-inwater (O/W) nanoemulsions of HS to enhance the bioaccessibility of its active compounds. The influences of hydrophiliclipophilic balance (HLB) value of surfactant and grapeseed oil (GSO) to olive oil (OO) ratio on the droplet size, zeta potential, PDI and stability of the nanoemulsions were investigated. The results showed that the smallest particle size was obtained at 145.9 nm with PDI = 0.388 and zeta-potential = -41.1 mV in the systems prepared using HLB value of 12 and 2:1 ratio of GSO to OO. Then the selected nanoemulsion which based on the lowest particle size (NE-F6, GSO:OO = 2:1, and HLB = 12) showed good stability over time and temperature without no phase separation, creaming or cracking was spotted. The pH value of the NE-F6 was obtained at 5.2

    Development of nanoemulsion incorporated with Hibiscus sabdariffa for cosmeceutical application

    Get PDF
    Hibiscus sabdariffa (HS) has been reported to possess a crucial content of bioactive compounds, such as phenolic acids and flavonoids, therefore, HS was recognized as a source of antioxidants. Due to that, the development of nanoemulsion incorporated with HS appears promising for cosmeceutical application. This study is focused on the formulation of oil-inwater (O/W) nanoemulsions of HS to enhance the bioaccessibility of its active compounds. The influences of hydrophiliclipophilic balance (HLB) value of surfactant and grapeseed oil (GSO) to olive oil (OO) ratio on the droplet size, zeta potential, PDI and stability of the nanoemulsions were investigated. The results showed that the smallest particle size was obtained at 145.9 nm with PDI = 0.388 and zeta-potential = -41.1 mV in the systems prepared using HLB value of 12 and 2:1 ratio of GSO to OO. Then the selected nanoemulsion which based on the lowest particle size (NE-F6, GSO:OO = 2:1, and HLB = 12) showed good stability over time and temperature without no phase separation, creaming or cracking was spotted. The pH value of the NE-F6 was obtained at 5.2

    Computational Simulation of Boil-Off Gas Formation inside Liquefied Natural Gas tank using Evaporation Model in ANSYS Fluent

    Get PDF
    Research on the waste energy and emission has been quite intensive recently. The formation, venting and flared the Boil-off gas (BOG) considered as one of the contribution to the Greenhouse Gas (GHG) emission nowadays. The current model or method appearing in the literature is unable to analyze the real behavior of the vapor inside Liquefied Natural Gas (LNG) tank and unable to accurately estimate the amount of boil-off gas formation. In this paper, evaporation model is used to estimate LNG Boil-Off rate (BOR) inside LNG tank. Using User Define Function (UDF) hooked to the software ANSYS Fluent. The application enable drag law and alternative heat transfer coefficient to be included. Three dimensional membrane type LNG cargos are simulated with selected boundary condition located in the United States Gulf Coast based on average weather conditions. The result shows that the value of BOR agrees well with the previous study done with another model and with International Marine organization (IMO) standard which is less than 0.15% weight per day. The results also enable us to visualize the LNG evaporation behaviors inside LNG tanks

    The effect of different aspect ratio and bottom heat flux towards contaminant removal using numerical analysis

    Get PDF
    Cubic Interpolated Pseudo-particle (CIP) numerical simulation scheme has been anticipated to predict the interaction involving fluids and solid particles in an open channel with rectangular shaped cavity flow. The rectangular shaped cavity is looking by different aspect ratio in modelling the real pipeline joints that are in a range of sizes. Various inlet velocities are also being applied in predicting various fluid flow characteristics. In this paper, the constant heat flux is introduced at the bottom wall, showing the buoyancy effects towards the contaminant’s removal rate. In order to characterize the fluid flow, the numerical scheme alone is initially tested and validated in a lid driven cavity with a single particle. The study of buoyancy effects and different aspect ratio of rectangular geometry were carried out using a MATLAB govern by Navier-Stokes equation. CIP is used as a model for a numerical scheme solver for fluid solid particles interaction. The result shows that the higher aspect ratio coupled with heated bottom wall give higher percentage of contaminant’s removal rate. Comparing with the benchmark results has demonstrated the applicability of the method to reproduce fluid structure which is complex in the system. Despite a slight deviation of the formations of vortices from some of the literature results, the general pattern is considered to be in close agreement with those published in the literature

    Effect of Soot Particle Diameter to Soot Movement in Diesel Engine

    Get PDF
    Soot is one of the end product produced from the combustion of diesel engine. It can adversely affect the performance of the engine. It can cause the lubricant oil to be dirty thus increase its viscosity. These will results to frequent change of lubricant oil. Therefore, the focus of this study is related to the mechanism soot particles movement during the combustion process in the cylinder of diesel engine. The study of the path movement of soot particles from the initial position where it was formed to the last position was carried out. To analyze their movements, the data formation of soot particles was obtained through the simulation of combustion engine using Kiva-3V software which was used in previous investigation. The data that were obtained from the Kiva-3v simulation were velocity vectors of the soot, fuel, temperature, pressure and others. This data is used in the MATLAB routine to calculate the location of soot particles in the combustion chamber. Mathematics algorithm which is used in the MATLAB routine is trilinear interpolation and 4th order of Runge Kutta. In this study, the influence of soot particles diameter with different angular (θ) is included in the calculation to determine its movement. Results from this study shows that if the size of soot particles is bigger, the probability of the movement of soot particles to the combustion chamber wall is high thus contaminating the lubricant oil

    A review of data analysis for early-childhood period: taxonomy, motivations, challenges, recommendation, and methodological aspects

    Get PDF
    Early childhood is a significant period when transitions take place in children. This period is a hot topic among researchers who pursue this domain across different scientific disciplines. Many studies addressed social, scientific, medical, and technical topics during early childhood. Researchers also utilized different analysis measures to conduct experiments on the different types of data related to the early childhood to produce research articles. This paper aims to review and analyze the literature related to early childhood in addition to the data analyses and the types of data used. The factors that were considered to boost the understanding of contextual aspects in the published studies related to early childhood were considered as open challenges, motivations, and recommendations of researchers who aimed to advance the study in this area of science. We systematically searched articles on topics related to early childhood, the data analysis approaches used, and the types of data applied. The search was conducted on five major databases, namely, ScienceDirect, Scopus, Web of Science, IEEE Xplore, and PubMed from 2013 to September 2017. These indices were considered sufficiently extensive and reliable to cover our field of the literature. Articles were selected on the basis of our inclusion and exclusion criteria (n = 233). The first portion of studies (n = 103/233) focused on the different aspects related to the development of children in early age. They discussed different topics, such as the body growth development of children, psychology, skills, and other related topics that overlap between two or more of the previous topics or do not fall into any of the categories but are still under development. The second portion of studies (n = 107/233) focused on different aspects associated with health in early childhood. A number of topics were discussed in this regard, such as those related to family health, medical procedures, interventions, and risk that address the health-related aspects, in addition to other related topics that overlap between two or more of the previous topics or do not fall into any of the categories but are still under health. The remaining studies (n = 23/233) were categorized to the other main category because they overlap between the previous two major categories, namely, development and health, or they do not fall into any of the previous main categories. Early childhood is a sensitive period in every child’s life. This period was studied using different means of data analysis and with the aid of different data types to produce different findings from the previous studies. Research areas on early childhood vary, but they are equally significant. This paper emphasizes the current standpoint and opportunities for research in this area and boosts additional efforts toward the understanding of this research field

    Mini acceleration and deceleration driving strategy to increase the operational time of flywheel hybrid module

    Get PDF
    This paper presents a new driving strategy to increase the operational time of flywheel hybrid module. The flywheel hybrid module contains low cost mechanical parts which installed on the small motorcycle. Based on normal driving cycles characteristics, the Mini-AD driving strategy is develop. It is involved a series of short or mini acceleration cycle and short deceleration cycle on top of the normal driving cycles. The new strategy is simulated for flywheel hybrid module, aimed for acceleration phase only. Simulations show that the new driving strategy can increase the operational time of flywheel hybrid module up to 62.5%

    Numerical Analysis on the Effects of Cavity Geometry with Heat towards Contaminant Removal

    Get PDF
    Contaminants are recently discovered at the joint of large piping system and causing defect to industrial product. A computational analysis can be used as a solution of the hydrodynamic contaminant removal without any modification needed. In this paper, the effect of heat is introduced to analyze the heat transfer and flow field in a channel with cavity heated at the bottom sides coupled with different shape of cavity. The cavity shape used comes with three shapes i.e. square, triangle and semicircle. The process of fluid dynamic in a cavity is modeled via numerical solution of the Navier–Stokes equations using Cubic Interpolated Profile (CIP) method. By using the simulation of hydrodynamic contaminant removal, the flow of streamlines and vortices pattern was investigated in the cavities. In order to remove all of the contaminant, hydrodynamic need to take part in this simulation which is flow from the inlet of the channel and create vortices to remove it from the cavities. The result shows that the percentage of contaminant removal is higher for semicircle cavity with higher Grashof number. The result also indicates that vortices formation is highly dependent on the cavity geometry and creates a buoyancy effect

    Modeling of Flywheel Hybrid Powertrain to Optimize Energy Consumption in Mechanical Hybrid Motorcycle

    Get PDF
    The creation of internal combustion engine is a significant milestone in power engineering world which simplified high mechanical energy demand jobs like moving vehicle and machinery. Even though the internal combustion engine gives lot of advantages, however, this type of engine is incapable to convert the heat energy from fuel combustion to the mechanical energy efficiently. Small capacity engine e.g. motorcycle engine having the power conversion efficiency between 25-30%. Therefore, alternative power source is required to support the internal combustion engine in order to increase the overall system efficiency. These phenomena give encouragement to implement the hybridization process. This is to increase the system efficiency in transferring power to the wheel. Hybridization processes e.g. flywheel as secondary power source can increase power transfer efficiency between 30%-80%. Hence, the purpose of this research is to develop the mathematical model of the power transfer efficiency of flywheel hybrid motorcycle by using back trace simulation method. This model will record the amount of energy use in acceleration phase of the driving cycle. Subsequently, the efficiency ratio of motorcycle power transfer is calculated and comparison of those ratios between the conventional motorcycle and the hybrid motorcycle is made. The outstanding results show that the hybrid motorcycle is capable to conserve the energy used up to 36% compare to the conventional motorcycle that wasted energy up to 200%. As a conclusion, flywheel as the secondary power source is capable to supply enough energy to propel the motorcycle forward

    Effect of Soot Particle Diameter to Soot Movement in Diesel Engine

    Get PDF
    Soot is one of the end product produced from the combustion of diesel engine. It can adversely affect the performance of the engine. It can cause the lubricant oil to be dirty thus increase its viscosity. These will results to frequent change of lubricant oil. Therefore, the focus of this study is related to the mechanism soot particles movement during the combustion process in the cylinder of diesel engine. The study of the path movement of soot particles from the initial position where it was formed to the last position was carried out. To analyze their movements, the data formation of soot particles was obtained through the simulation of combustion engine using Kiva-3V software which was used in previous investigation. The data that were obtained from the Kiva-3v simulation were velocity vectors of the soot, fuel, temperature, pressure and others. This data is used in the MATLAB routine to calculate the location of soot particles in the combustion chamber. Mathematics algorithm which is used in the MATLAB routine is trilinear interpolation and 4th order of Runge Kutta. In this study, the influence of soot particles diameter with different angular (θ) is included in the calculation to determine its movement. Results from this study shows that if the size of soot particles is bigger, the probability of the movement of soot particles to the combustion chamber wall is high thus contaminating the lubricant oil
    corecore