365 research outputs found

    Optimization of CO2 production rate for firefighting robot applications using response surface methodology

    Get PDF
    A carbon dioxide gas-powered pneumatic actuation has been proposed as a suitable power source for an autonomous firefighting robot (CAFFR), which is designed to operate in an indoor fire environment in our earlier study. Considering the consumption rate of the pneumatic motor, the gas-powered actuation that is based on the theory of phase change material requires optimal determination of not only the sublimation rate of carbon dioxide but also the sizing of dry ice granules. Previous studies that have used the same theory are limited to generating a high volume of carbon dioxide without reference to neither the production rate of the gas nor the size of the granules of the dry ice. However, such consideration remains a design requirement for efficient driving of a carbon dioxide-powered firefighting robot. This paper investigates the effects of influencing design parameters on the sublimation rate of dry ice for powering a pneumatic motor. The optimal settings of these parameters that maximize the sublimation rate at the minimal time and dry ice mass are presented. In the experimental design and analysis, we employed full-factorial design and response surface methodology to fit an acceptable model for the relationship between the design factors and the response variables. Predictive models of the sublimation rate were examined via ANOVA, and the suitability of the linear model is confirmed. Further, an optimal sublimation rate value of 0.1025 g/s is obtained at a temperature of 80°C, the mass of 16.1683 g, and sublimation time of 159.375 s

    PHP1 A STUDY EVALUATING PATTERN OF NON-PRESCRIPTION PURCHASE BY CONSUMERS FROM COMMUNITY PHARMACIES IN MALAYSIA

    Get PDF

    Potential of Pseudomonas sp. & Bacillus sp. for Controlling Fusarium oxysporum, A Causal Agent For Rockmelon Fusarium Wilt Disease

    Get PDF
    Fusarium sp. recognized as among main pathogen to the rockmelon. The disease was renown as Fusarium wilt disease (FWD). As to the FWD, objectives of this study were to obtain the pure culture of Fusarium oxyporum f. sp. melonis (Fom), and to control the Fom via biological control method using effective bacteria. Beside, the study was also screened the plant growth promoting properties of Pseudomonas sp. and Bacillus sp.. Fusarium oxysporum f. sp. melonis Snyder & Hans caused postharvest disease problem affecting melon production and loss almost 100 % due to this destructive disease. Effective bacteria like Bacillus sp. and Pseudomonas sp. has a good potential to suppress growth of pathogen. Based on the phenotypic identification and morphological characterization of fungus isolated was identified as Fusarium oxysporum f. sp. melonis and it was than confirmed with molecular methods with 99% similarity. Environmental factors that give the optimum growth of Fusarium were evaluated. Based on the result, the growth of fungus showed the best on PDA media (2.538 ± 0.095 cm), 30 °C (2.475 ± 0.096 cm), pH 4 (2.700 ± 0.216 cm) and under continuous dark condition (3.433 ± 0.115 cm). The Bacillus sp. (DP - 1) showed the highest antagonistic activity of fungus and bacteria with 70.68 % in dual culture assay and highest inhibition of fungus growth in double layer test with no ability to growth. As production of protease, all 7 bacteria tested showed positive result of by producing clear zone on PDA media except by B43. From several parameter tested, the result showed that Bacillus sp. has more potential as biological control agent to control the Fusarium wilt disease in rockmelon plant compared to Pseudomonas sp.

    Oral administration of tocotrienol ameliorates lead-induced toxicity in the rat brain

    Get PDF
    The occurrence of severe lead (Pb) poisoning has risen in certain countries. There is increasing evidence that chronic lead exposure disturbs the prooxidant: antioxidant balance in the brain tissue and alters brain histology. The present study observed the antioxidant effect of tocotrienol-rich fraction (TRF) on brain tissues of the experimental rats following lead poisoning. Eighteen (n=18) male Sprague-Dawley rats, 6-weeks old, were randomly divided into control (CTRL) group and experimental groups; fed with 0.2% w/v lead acetate, as PB2 group; and fed with 0.2% w/v lead acetate and daily TRF supplementation (200 mg/kg body weight) as PB2T group. The experiment was conducted for 30 days. At the end of the study, the brain tissues were harvested and histopathological changes of the hippocampal region were observed. Biochemical findings such as brain lead, TRF and malondialdehyde (MDA) levels, and erythrocyte superoxide dismutase (SOD) activity were determined. It was observed that atypical apoptotic-like and disorganized neurons were present in the hippocampal region of the untreated PB2 group compared to PB2T group. Biochemical parameters showed a significant decrease (p 0.05) was obtained for MDA level, there was a significant increase (p < 0.05) in the erythrocyte SOD activity in PB2T compared to PB2 and CTRL. Supplementation with TRF improved histopathological changes in the brain tissues caused by lead exposure in drinking water by reducing lead accumulation in the brain of experimental rats

    Long-term halocarbon observations from a coastal and an inland site in Sabah, Malaysian Borneo

    Get PDF
    Abstract. Short-lived halocarbons are believed to have important sources in the tropics, where rapid vertical transport could provide a significant source to the stratosphere. In this study, quasi-continuous measurements of short-lived halocarbons are reported for two tropical sites in Sabah (Malaysian Borneo), one coastal and one inland (rainforest). We present the observations for C2Cl4, CHBr3, CH2Br2* (actually ~80% CH2Br2 and ~20% CHBrCl2) and CH3I from November 2008 to January 2010 made using our μDirac gas chromatographs with electron capture detection (GC-ECD). We focus on the first 15 months of observations, showing over one annual cycle for each compound and therefore adding significantly to the few limited-duration observational studies that have been conducted thus far in southeast Asia. The main feature in the C2Cl4 behaviour at both sites is its annual cycle, with the winter months being influenced by northerly flow with higher concentrations, typical of the Northern Hemisphere, and with the summer months influenced by southerly flow and lower concentrations representative of the Southern Hemisphere. No such clear annual cycle is seen for CHBr3, CH2Br2* or CH3I. The baseline values for CHBr3 and CH2Br2* are similar at the coastal (overall median: CHBr3 1.7 ppt, CH2Br2* 1.4 ppt) and inland sites (CHBr3 1.6 ppt, CH2Br2* 1.1 ppt), but periods with elevated values are seen at the coast (overall 95th percentile: CHBr3 4.4 ppt, CH2Br2ast 1.9 ppt), presumably resulting from the stronger influence of coastal emissions. Overall median bromine values from [CHBr3 × 3] + [CH2Br2* × 2] are 8.0 ppt at the coast and 6.8 ppt inland. The median values reported here are largely consistent with other limited tropical data and imply that southeast Asia generally is not, as has been suggested, a hot spot for emissions of these compounds. These baseline values are consistent with the most recent emissions found for southeast Asia using the p-TOMCAT (Toulouse Off-line Model of Chemistry And Transport) model. CH3I, which is only observed at the coastal site, is the shortest-lived compound measured in this study, and the observed atmospheric variations reflect this, with high variability throughout the study period. This work was supported by a NERC consortium grant to the OP3 team, by NCAS, by the European Commission through the SCOUT-O3 project (505390-GOCE-CF2004) and by NERC western Pacific grant number NE/F020341/1 and NERC CAST grant number NE/J006246/1. L. M. O’Brien and M. J. Ashfold thank NERC for research studentships. A. D. Robinson acknowledges NERC for their support through small grant project NE/D008085/1. N. R. P. Harris is supported by a NERC Advanced Research Fellowship. We thank the Sabah Foundation, Danum Valley Field Centre and the Royal Society (Glen Reynolds) for field site support. The research leading to these results has received funding from the European Union’s Seventh Framework Programme FP7/2007–2013 under grant agreement no. 226224 – SHIVA. We thank David Oram and Stephen Humphrey at UEA for their assistance in checking the calibration of our Aculife cylinder in May 2009. This is paper number 626 of the Royal Society’s South East Asian Rainforest Research Programme.This is the final published version. It first appeared at http://www.atmos-chem-phys.net/14/8369/2014/acp-14-8369-2014.html

    Antioxidant Activity of the Phenolic Leaf Extracts from Monechma ciliatum in Stabilization of Corn Oil

    Get PDF
    The total phenolic content and the antioxidan potential of methanolic extract (ME), ethyl acetate extract (EAE), and hexane extract (HE) from Monechma ciliatum leaves (MCL) were evaluated. The Folin-Ciocalteu, b-carotene bleaching, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and the accelerated oxidation methods were used for evaluation. Both the extraction yield and the antioxidant activity (AOA) were strongly dependent on the solvent. Among the extracts, ME exhibited highest total phenolic compounds (TPC) and IC50 values for DPPH, followed by EAE and HE, respectively. Peroxide value (PV), anisidine value (AV) conjugated dienes (CD), and thiobarbituric acid reactive substances (TBARS) were taken as the parameters for evaluation of stabilization efficacy of MCL extracts and results revealed MCL to be a potent antioxidant for the stabilization of corn oil. As a general trend, increased AOA was observed for increased extract concentration. The predominant phenolic compounds identified by HPLC-DAD in MCL extracts were p-coumaric acid, vanillin and ferulic acid

    Antioxidant Activity of the Phenolic Leaf Extracts from Monechma ciliatum in Stabilization of Corn Oil

    Get PDF
    The total phenolic content and the antioxidan potential of methanolic extract (ME), ethyl acetate extract (EAE), and hexane extract (HE) from Monechma ciliatum leaves (MCL) were evaluated. The Folin-Ciocalteu, b-carotene bleaching, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and the accelerated oxidation methods were used for evaluation. Both the extraction yield and the antioxidant activity (AOA) were strongly dependent on the solvent. Among the extracts, ME exhibited highest total phenolic compounds (TPC) and IC50 values for DPPH, followed by EAE and HE, respectively. Peroxide value (PV), anisidine value (AV) conjugated dienes (CD), and thiobarbituric acid reactive substances (TBARS) were taken as the parameters for evaluation of stabilization efficacy of MCL extracts and results revealed MCL to be a potent antioxidant for the stabilization of corn oil. As a general trend, increased AOA was observed for increased extract concentration. The predominant phenolic compounds identified by HPLC-DAD in MCL extracts were p-coumaric acid, vanillin and ferulic acid

    Leveraging the performance of LBM-HPC for large sizes on GPUs using ghost cells

    Get PDF
    Today, we are living a growing demand of larger and more efficient computational resources from the scientific community. On the other hand, the appearance of GPUs for general purpose computing supposed an important advance for covering such demand. These devices offer an impressive computational capacity at low cost and an efficient power consumption. However, the memory available in these devices is (sometimes) not enough, and so it is necessary computationally expensive memory transfers from (to) CPU to (from) GPU, causing a dramatic fall in performance. Recently, the Lattice-Boltzmann Method has positioned as an efficient methodology for fluid simulations. Although this method presents some interesting features particularly amenable to be efficiently exploited on parallel computers, it requires a considerable memory capacity, which can suppose an important drawback, in particular, on GPUs. In the present paper, it is proposed a new GPU-based implementation, which minimizes such requirements with respect to other state-of-the-art implementations. It allows us to execute almost 2xx bigger problems without additional memory transfers, achieving faster executions when dealing with large problems

    Natural convection in a square cavity with uniformly heated and/or insulated walls using marker-and-cell method

    Get PDF
    In this study, a numerical investigation has been performed using the computational Harlow-Welch MAC (Marker and Cell) finite difference method to analyse the unsteady state two-dimensional natural convection in lid-driven square cavity with left wall maintained at constant heat flux and remaining walls kept thermally insulated. The significant parameters in the present study are Reynolds number (Re), thermal Grashof number (Gr) and Prandtl number (Pr) and Peclét number (Pe =PrRe). The structure of thermal convection patterns is analysed via streamline, vorticity, pressure and temperature contour plots. The influence of the thermophysical parameters on these distributions is described in detail. Validation of solutions with earlier studies is included. Mesh independence is also conducted. It is observed that an increase in Prandtl number intensifies the primary circulation whereas it reduces the heat transfer rate. Increasing thermal Grashof number also decreases heat transfer rates. Furthermore the isotherms are significantly compressed towards the left (constant flux) wall with a variation in Grashof number while Peclét number is fixed. The study is relevant to solar collector heat transfer simulations and also crystal growth technologies
    corecore