252 research outputs found

    Optimized Microstrip Antennas with Metamaterial Superstrates Using Particle Swarm Optimization

    Full text link
    Two new designs of compact microstrip antennas, where metamaterials are placed on structure as superstrate, are proposed. The newly designed metamaterial unit cell and antenna feed position optimized by particle swarm optimization. It was found that the characteristics of novel microstrip antennas with designed metamaterials placed on the superstrate are comparable to the conventional patch antennas, while their gain, directivity and radiating efficiency are noticeably improved. Gain of microstrip antenna is increased 3dB to 4dB and level of back lobe is decresed

    Spatio-temporal estimation of wind speed and wind power using extreme learning machines: predictions, uncertainty and technical potential

    Get PDF
    With wind power providing an increasing amount of electricity worldwide, the quantification of its spatio-temporal variations and the related uncertainty is crucial for energy planners and policy-makers. Here, we propose a methodological framework which (1) uses machine learning to reconstruct a spatio-temporal field of wind speed on a regular grid from spatially irregularly distributed measurements and (2) transforms the wind speed to wind power estimates. Estimates of both model and prediction uncertainties, and of their propagation after transforming wind speed to power, are provided without any assumptions on data distributions. The methodology is applied to study hourly wind power potential on a grid of 250×250 m2 for turbines of 100 m hub height in Switzerland, generating the first dataset of its type for the country. We show that the average annual power generation per turbine is 4.4 GWh. Results suggest that around 12,000 wind turbines could be installed on all 19,617 km2 of available area in Switzerland resulting in a maximum technical wind potential of 53 TWh. To achieve the Swiss expansion goals of wind power for 2050, around 1000 turbines would be sufficient, corresponding to only 8% of the maximum estimated potential

    Residential density classification for sustainable housing development using a machine learning approach

    Get PDF
    Using Machine Learning (ML) algorithms for classification of the existing residential neighbourhoods and their spatial characteristics (e.g. density) so as to provide plausible scenarios for designing future sustainable housing is a novel application. Here we develop a methodology using a Random Forests algorithm (in combination with GIS spatial data processing) to detect and classify the residential neighbourhoods and their spatial characteristics within the region between Oxford and Cambridge, that is, the 'Oxford-Cambridge Arc'. The classification model is based on four pre-defined urban classes, that is, Centre, Urban, Suburban, and Rural for the entire region. The resolution is a grid of 500 m × 500 m. The features for classification include (1) dwelling geometric attributes (e.g. garden size, building footprint area, building perimeter), (2) street networks (e.g. street length, street density, street connectivity), (3) dwelling density (number of housing units per hectare), (4) building residential types (detached, semi-detached, terraced, and flats), and (5) characteristics of the surrounding neighbourhoods. The classification results, with overall average accuracy of 80% (accuracy per class: Centre: 38%, Urban 91%, Suburban 83%, and Rural 77%), for the Arc region show that the most important variables were three characteristics of the surrounding area: residential footprint area, dwelling density, and number of private gardens. The results of the classification are used to establish a baseline for the current status of the residential neighbourhoods in the Arc region. The results bring data-driven decision-making processes to the level of local authority and policy makers in order to support sustainable housing development at the regional scale

    Covid-19 mobility restrictions: impacts on urban air quality and health

    Get PDF
    In 2020, Covid-19-related mobility restrictions resulted in the most extensive human-made air-quality changes ever recorded. The changes in mobility are quantified in terms of outdoor air pollution (concentrations of PM2.5 and NO2) and the associated health impacts in four UK cities (Greater London, Cardiff, Edinburgh and Belfast). After applying a weather-corrected machine learning (ML) technique, all four cities show NO2 and PM2.5 concentration anomalies in 2020 when compared with the ML-predicted values for that year. The NO2 anomalies are –21% for Greater London, –19% for Cardiff, –27% for Belfast and –41% for Edinburgh. The PM2.5 anomalies are 7% for Greater London, –1% for Cardiff, –15% for Edinburgh, –14% for Belfast. All the negative anomalies, which indicate air pollution at a lower level than expected from the weather conditions, are attributable to the mobility restrictions imposed by the Covid-19 lockdowns. Spearman rank-order correlations show a significant correlation between the lowering of NO2 levels and reduction in public transport (p < 0.05) and driving (p < 0.05), which is associated with a decline in NO2-attributable mortality. These positive effects of the mobility restrictions on public health can be used to evaluate policies for improved outdoor air quality

    An open-source automatic survey of green roofs in London using segmentation of aerial imagery

    Get PDF
    Green roofs can mitigate heat, increase biodiversity, and attenuate storm water, giving some of the benefits of natural vegetation in an urban context where ground space is scarce. To guide the design of more sustainable and climate-resilient buildings and neighbourhoods, there is a need to assess the existing status of green roof coverage and explore the potential for future implementation. Therefore, accurate information on the prevalence and characteristics of existing green roofs is needed, but this information is currently lacking. Segmentation algorithms have been used widely to identify buildings and land cover in aerial imagery. Using a machine learning algorithm based on U-Net (Ronneberger et al., 2015) to segment aerial imagery, we surveyed the area and coverage of green roofs in London, producing a geospatial dataset (https://doi.org/10.5281/zenodo.7603123, Simpson et al., 2023). We estimate that there was 0.23 km2 of green roof in the Central Activities Zone (CAZ) of London, 1.07 km2 in Inner London, and 1.89 km2 in Greater London in the year 2021. This corresponds to 2.0 % of the total building footprint area in the CAZ and 1.3 % in Inner London. There is a relatively higher concentration of green roofs in the City of London, covering 3.9 % of the total building footprint area. Test set accuracy was 0.99, with an F score of 0.58. When tested against imagery and labels from a different year (2019), the model performed just as well as a model trained on the imagery and labels from that year, showing that the model generalised well between different imagery. We improve on previous studies by including more negative examples in the training data and by requiring coincidence between vector building footprints and green roof patches. We experimented with different data augmentation methods and found a small improvement in performance when applying random elastic deformations, colour shifts, gamma adjustments, and rotations to the imagery. The survey covers 1558 km2 of Greater London, making this the largest open automatic survey of green roofs in any city. The geospatial dataset is at the single-building level, providing a higher level of detail over the larger area compared to what was already available. This dataset will enable future work exploring the potential of green roofs in London and on urban climate modelling.</p

    Prevalence and genotyping identification of Cryptosporidium in adult ruminants in central Iran

    Get PDF
    Background Apicomplexan parasites of the genus Cryptosporidium infect a wide range of animal species as well as humans. Cryptosporidium spp. can cause life threatening diarrhea especially in young animals, children, immunocompromised patients and malnourished individuals. Asymptomatic cryptosporidial infections in animals can also occur, making these animals potential reservoirs of infection. Methods In the present study, a molecular survey of Cryptosporidium spp. in ruminants that were slaughtered for human consumption in Yazd Province, located in central Iran was conducted. Faeces were collected per-rectum from 484 animals including 192 cattle, 192 sheep and 100 goats. DNA was extracted from all samples and screened for Cryptosporidium by PCR amplification of the 18S rRNA gene. Positives were Sanger sequenced and further subtyped by sequence analysis of the 60 kDa glycoprotein (gp60) locus. Results In total, Cryptosporidium spp. were detected in 22 animals: C. andersoni and C. bovis in seven and two cattle faecal samples, respectively, C. ubiquitum in five sheep, and C. xiaoi in six sheep and two goat samples, respectively. To our knowledge, this study provides for the first time, molecular information concerning Cryptosporidium species infecting goats in Iran, and is also the first report of C. ubiquitum and C. xiaoi from ruminants in Iran. Conclusion The presence of potentially zoonotic species of Cryptosporidium in ruminants in this region may suggest that livestock could potentially contribute to human cryptosporidiosis, in particular among farmers and slaughterhouse workers, in the area. Further molecular studies on local human populations are required to more accurately understand the epidemiology and transmission dynamics of Cryptosporidium spp. in this region

    A Numercial Comparison of Single-phase Forced Convective Heat Transfer Between Round Tube and Round Microchannel Heat Exchangers

    Get PDF
    Abstract: Three dimensional simulations of the single-phase laminar flow and forced convective heat transfer of water in round tube and round microchannel heat exchangers were investigated numerically. This numerical method was developed to measure heat transfer parameters of round tube and round microchannel tube geometries. Then, similarities and differences were compared between different geometries. The geometries and operating conditions of those indicated heat exchangers were created using a finite volume-based computational fluid dynamics technique. In this article, at each Z-location variation of dimensionless local temperature, non-dimensional local heat flux variation and dimensionless local Nusselt number distribution along the tube length were compared between round tube and round microchannel heat exchangers. Consequently, averaged computational Nusselt number was obtained for those indicated models and then validation study was performed for round tube counter flow type heat exchanger model. Finally, all of these numerical results for both kind of geometries in counter flow heat exchangers were discussed in details
    • …
    corecore