17 research outputs found

    1. Geodetic constraints on slip rates of large Central Asian faults 2. Earthquake Emergency Education in Dushanbe, Tajikistan

    Get PDF
    1. Geodetic constraints on slip rates of large Central Asian faults Deformation throughout the Hindu Kush-Pamir-South Tien Shan section of the Alpine-Himalayan collision, as measured with GPS, shares characteristics in common with neighboring regions in Iran and Tibet, particularly the presence of numerous large faults with relatively low slip rates and large areas of distributed high elevation, suggesting similarities in regional dynamics. The convergence rate between India and Eurasia across this region is 27 ± 2 mm/yr, accommodated over more than 500,000 km2 on thrust faulting north of the Peshawar Basin, the Hindu Kush, and within the Pamir (12 ± 3 mm/yr), and across the Alai-South Tien Shan (10 ± 4 mm/yr) with complementary slip on the Chaman-Gardiz (-5 ± 4 mm/yr) and Darvaz-Karakul (-12 ± 4 mm/yr) shear systems. The Pamir itself appears to deform through pure shear, with east-west extension of 11 ± 10 mm/yr comparable to the north-south shortening rate. By contrast, slip rates on the Herat and Talas-Ferghana faults are negligible. 2. Earthquake Emergency Education in Dushanbe, Tajikistan We developed a middle school earthquake science and hazards curriculum to promote earthquake awareness to students in the Central Asian country of Tajikistan. These materials include pre- and post-assessment activities, six directed inquiry-based science activities describing physical processes related to earthquakes, five interactive activities on earthquake hazards and mitigation strategies, and a codification art/literacy project. This curriculum was implemented with 43 middle school students in Dushanbe, Tajikistan in the winter of 2008. We examine the effectiveness of each curriculum component in communicating the causes, effects, and mitigation strategies associated with earthquakes to young people, and find significant improvements in seismic and earthquake hazards literacy as a result of the program

    Invited Perspective: Building sustainable and resilient communities – Recommended actions for natural hazard scientists

    Get PDF
    Reducing disaster risk is critical to securing the ambitions of the Sustainable Development Goals (SDGs), and natural hazard scientists make a key contribution to achieving this aim. Understanding Earth processes and dynamics underpins hazard analysis, which (alongside analysis of other disaster risk drivers) informs the actions required to manage and reduce disaster risk. Here we suggest how natural hazard research scientists can better contribute to the planning and development of sustainable and resilient communities through improved engagement in disaster risk reduction (DRR). Building on existing good practice, this perspective piece aims to provoke discussion in the natural hazard science community about how we can strengthen our engagement in DRR. We set out seven recommendations for enhancing the integration of natural hazard science into DRR: (i) characterise multi-hazard environments, (ii) prioritise effective, positive, long-term partnerships, (iii) understand and listen to your stakeholders, (iv) embed cultural understanding into natural hazards research, (v) ensure improved and equitable access to hazards information, (vi) champion people-centred DRR (leaving no one behind), and (vii) improve links between DRR and sustainable development. We then proceed to synthesise key actions that natural hazards scientists and research funders should consider taking to improve education, training, and research design, and to strengthen institutional, financial and policy actions. We suggest that these actions should help to strengthen the effective application of natural hazards science to reduce disaster risk. By recognising and taking steps to address the issues raised in these recommendations, we propose that the natural hazard science community can more effectively contribute to the inter/transdisciplinary, integrated work required to improve DR

    Using paired teaching for earthquake education in schools

    Get PDF
    In this study, we have created 10 geoscience video lessons that follow the paired-teaching pedagogical approach. This method is used to supplement the standard school curriculum with video lessons, instructed by geoscientists from around the world, coupled with activities carried out under the guidance of classroom teachers. The video lessons introduce students to the scientific concepts behind earthquakes (e.g. the Earth's interior, plate tectonics, faulting, and seismic energy), earthquake hazards, and mitigation measures (e.g. liquefaction, structural, and non-structural earthquake hazards). These concepts are taught through hands-on learning, where students use everyday materials to build models to visualize basic Earth processes that produce earthquakes and explore the effects of different hazards. To evaluate the effectiveness of these virtual lessons, we tested our videos in school classrooms in Dushanbe (Tajikistan) and London (United Kingdom). Before and after the video implementations, students completed questionnaires that probed their knowledge on topics covered by each video, including the Earth's interior, tectonic plate boundaries, and non-structural hazards. Our assessment results indicate that, while the paired-teaching video lessons appear to enhance student knowledge and understanding of some concepts (e.g. Earth's interior, earthquake location forecasting, and non-structural hazards), they bring little change to their views on the causes of earthquakes and their relation to plate boundaries. In general, the difference between UK and Tajik students' level of knowledge prior to and after video testing is more significant than the difference between pre- and post-knowledge for each group. This could be due to several factors affecting curriculum testing (e.g. level of teachers' participation and classroom culture) and students' learning of content (e.g. pre-existing hazards knowledge and experience). To maximize the impact of school-based risk reduction education, curriculum developers must move beyond innovative content and pedagogical approaches, take classroom culture into consideration, and instil skills needed for participatory learning and discovery

    Editorial:the shadowlands of science communication in academia — definitions, problems, and possible solutions

    Get PDF
    Science communication is an important part of research, including in the geosciences, as it can benefit society, science, and make science more publicly accountable. However, much of this work takes place in “shadowlands” that are neither fully seen nor understood. These shadowlands are spaces, aspects, and practices of science communication which are not clearly defined and may be harmful with respect to the science being communicated or for the science communicators themselves. With the increasing expectation in academia that researchers should participate in science communication, there is a need to address some of the major issues that lurk in these shadowlands. Here the editorial team of Geoscience Communication seeks to shine a light on the shadowlands of geoscience communication and suggest some solutions and examples of effective practice. The issues broadly fall under three categories: 1) harmful or unclear objectives; 2) poor quality and lack of rigor; and 3) exploitation of science communicators working within academia. Ameliorating these will require: 1) clarifying objectives and audiences; 2) adequately training science communicators; and 3) giving science communication equivalent recognition to other professional activities. By shining a light on the shadowlands of science communication in academia and proposing potential remedies, our aim is to cultivate a more transparent and responsible landscape for geoscience communication—a transformation that will ultimately benefit the progress of science, the welfare of scientists, and more broadly society at large

    Investigating spatial and temporal patterns of deformation and erosion in orogens: Insights from the Himalaya-Tibet Orogen and the European Alps

    No full text
    Neueste Fortschritte in Techniken der hochauflösenden Topographie, Geochronologie und SatellitengeodĂ€sie haben DatensĂ€tze und Instrumente hervorgebracht, mit denen die rĂ€umlich-zeitlichen Verformungs- und Erosionsmuster in Gebirgslandschaften untersucht werden können. Diese DatensĂ€tze sind wichtige Bestandteile zur Begrenzung und Minderung geologischer Gefahren, die auch rĂ€umlicher und/oder zeitlicher Natur sind. Diese Arbeit zielt darauf ab, Kenntnisse der tektonischen Entwicklung des Himalaya-Tibet-Orogens und der umliegenden Regionen zu verfeinern, insbesondere in Bezug auf rĂ€umliche und zeitliche Schwankungen in Deformationsraten. Dies gelingt durch die Zusammenstellung und Darstellung von DatensĂ€tzen zu quartĂ€ren Störungen in einer relationalen Datenbank und durch Ergebnisse aus der statistischen Analyse von Daten zu Relativbewegungsraten an Störungen. Gleichermaßen untersucht diese Arbeit zeitliche Schwankungen der postglazialen Erosion und den Einfluss von SteinschlĂ€gen auf die Entwicklung eines kĂŒrzlich eisfrei gewordenen Tals in den europĂ€ischen Alpen. Dies wird mit Magnituden-HĂ€ufigkeits-Statistik erreicht. Die relationale Datenbank zeigt >1.000 quartĂ€re Störungsspuren mit Störungsparametern fĂŒr 123 quartĂ€re Störungen und >34.000 Erdbeben innerhalb der Kollisionszone von Indien mit Asien. Nahezu alle Regionen mit hoher SeismizitĂ€t ĂŒberschneiden sich mit Gebieten, in denen quartĂ€re Störungen kartiert wurden. Es weisen jedoch nicht alle Störungsgebiete auch eine hohe SeismizitĂ€t auf. Bei der Darstellung von Störungen mit vorhandenen palĂ€oseismischen Daten und/oder Relativbewegungsraten werden Regionen hervorgehoben, in denen große Erdbeben auftreten könnten. Die Analyse von 19 Störungen, an denen es insgesamt 57 Paare von quartĂ€ren und GPS-bestimmten Relativbewegungsraten gibt, hat ergeben, dass ein mĂ€ĂŸiger Prozentsatz (71%) der gesamten Schwankung in den quartĂ€ren Relativbewegungsraten statistisch durch eine lineare Beziehung zwischen den GPS-bestimmten und den quartĂ€ren Raten erklĂ€rt werden kann. Die restlichen 29% können auf andere Faktoren zurĂŒckzufĂŒhren sein, wie zeitliche Schwankungen in den Relativbewegungsraten ĂŒber ZeitrĂ€ume, die den Empfindlichkeiten der einzelnen Messmethoden entsprechen, oder aber methodische SchwĂ€chen. Im geologisch kĂŒrzlich eisfrei gewordenen Lauterbrunnental scheint es seit dem GletscherĂŒckzug große zeitliche Schwankungen der SteinschlagaktivitĂ€t zu geben. So deuten langfristige Steinschlaginventare (ĂŒber die eisfreie Zeit von ~11 ka) auf höhere Raten der SteinschlagaktivitĂ€t hin als solche, die mittlere (1 ka) und kurze (5,2 Jahre) ZeitrĂ€ume betrachten. Letztere wurden jeweils durch das Potenzgesetz und Beobachtungen mittels terrestrischem Laserscanning (TLS) bestimmt. Die Schwankungen in der SteinschlagaktivitĂ€t sind vermutlich auf die fehlende StĂŒtzwirkung des zurĂŒckweichenden Gletschers und Entspannungseffekte nach dem Abschmelzen des Gletschers und/oder den Einfluss von Frostsprengung durch Klimaschwankungen in den letzten 11 ka zurĂŒckzufĂŒhren. Zusammenfassend geben die Ergebnisse dieser Studie einen Einblick in Verformungskinematik und postglaziale Erosionsraten in Gebirgslagen. Über große rĂ€umliche Skalen hinweg scheint es wenig zeitliche Schwankungen in Verformungsraten zu geben. Im Gegensatz dazu gibt es ĂŒber kleinere Skalen große zeitliche Schwankungen in Erosionsraten. Die DatensĂ€tze und Methoden, die in dieser Arbeit verwendet werden, stellen eine Basis fĂŒr die weitere Untersuchung von rĂ€umlich-zeitlichen Mustern der Verformung und Erosion in Gebirgslandschaften dar und steuern zukĂŒnftige Forschung, indem sie bestehende DatenlĂŒcken aufzeigen.Recent advances in high resolution topography, geochronology and satellite geodesy techniques have provided datasets and tools that can be used to investigate the spatio- temporal patterns of deformation and erosion in mountain landscapes. These datasets are critical ingredients for constraining and mitigating geologic hazards which are also spatial and/or temporal in nature. By compiling and displaying datasets related to Quaternary faulting in a relational database and results from statistical analysis of fault slip rate data, this dissertation aims at refining the tectonic evolution of the Himalaya-Tibet orogen and the surrounding regions, with an emphasis on resolving spatial and temporal variations in deformation rates. Similarly, this dissertation investigates temporal variations in post-glacial erosion and the role of rockfalls in the evolution of a deglaciated valley in the European Alps. This is achieved using frequency-magnitude statistics. The relational database displays >1,000 Quaternary fault traces, with fault parameters for 123 Quaternary faults, and >34,000 earthquakes within the India-Asia collision zone. Nearly all regions of high seismicity overlap with where Quaternary faults have been mapped. However, not all faulted areas within these regions show high levels of seismicity. Displaying faults with paleoseismic records and/or slip rate data highlights regions that are capable of producing large earthquakes. The analysis of 57 Quaternary/Global Positioning System (GPS) slip rate pairs for 19 Quaternary faults from the database suggest that a moderate percentage (71%) of the total variation in the Quaternary slip rates can be statistically explained by a linear relationship between the GPS and Quaternary rates. The remaining 29% may be due to other factors such as temporal variations in slip rates over timescales individual methods are sensitive to and/or methodological shortcomings. In the deglaciated Lauterbrunnen valley, there appears to be large temporal variations in rockfall activity since deglaciation. Long timescale (~11 ka) rockfall inventories indicate higher rates of rockfall activity than intermediate (1 ka) and short (5.2 years) timescales as predicted by power-law and terrestrial laser scans (TLS) observations, respectively. This is likely due to debuttressing and stress relaxation effects after glacial retreat, and/or the influence of frost-shattering due to climatic oscillations in the past 11 ka. Taken together, results from this study shed light into the kinematics of deformation and postglacial erosion rates in mountainous settings. Over large spatial scales, there appears to be little temporal variation in deformation rates. Over smaller scales, there are large temporal variations in erosion rates. The datasets and methods used in this dissertation provide a platform for further investigation of spatio-temporal patterns of deformation and erosion in mountain environments, and guide future research by identifying where data gaps exist
    corecore