39 research outputs found
The prevalence of cervical abnormalities: Comparison of youth with perinatally acquired HIV and older women in Botswana
Background: Cervical cancer burden and prevalence of precursor lesions is unknown among young women living with HIV in high prevalence settings. Current cervical cancer screening guidelines in resource-limited settings with high HIV prevalence typically exclude adolescents and young women. After observing two cases of advanced cervical cancer among young women with perinatally acquired HIV, a pilot screening programme was established in Botswana.
Objectives: To compare the prevalence of cervical abnormalities in young women with perinatally acquired HIV with women aged 30–49 years, regardless of HIV status.
Method: We conducted a cross-sectional study of 30–49-year-old women who had visual inspection with acetic acid screening through the Botswana public sector programme, and youth (aged 15–24 years) with perinatally acquired HIV, at a single referral site between 2016 and 2018. We describe the prevalence of cervical abnormalities in each group as well as the crude prevalence ratio.
Results: The prevalence of cervical abnormalities in women 30–49 years of age was 10.9% (95% confidence interval [CI]: 10.4, 11.4), and 10.1% (95% CI: 4.7, 18.3) for youth. The crude prevalence ratio was 1.07 (95% CI: 0.58, 2.01).
Conclusion: Inclusion of youth living with HIV in cervical cancer screening services should be considered in settings with a high prevalence of HIV and cervical cancer
The extent and impact of variation in ADME genes in sub-Saharan African populations
Investigating variation in genes involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs are key to characterizing pharmacogenomic (PGx) relationships. ADME gene variation is relatively well characterized in European and Asian populations, but data from African populations are under-studied—which has implications for drug safety and effective use in Africa
Rapid dynamic changes of FL.2 variant : a case report of COVID-19 breakthrough infection
AVAILABILITY OF DATA AND MATERIALS :
The figures and tables of the study are included in the manuscript. The FASTA files are deposited in the Global Initiative on Sharing All Influenza Data (GISAID) database https://doi.org/10.55876/gis8.230821xh
: Day-08 is EPI_ISL_17601323[hCoV-19/Botswana/BHP_0123017470/2023], and Day-21 is EPI_ISL_17601322[hCoV-19/Botswana/BHP_1100219671/2023].We investigated intra-host genetic evolution using two SARS-CoV-2 isolates from a fully vaccinated (primary schedule x2 doses of AstraZeneca plus a booster of Pfizer), >70-year-old woman with a history of lymphoma and hypertension who presented a SARS-CoV-2 infection for 3 weeks prior to death due to COVID-19. Two full genome sequences were determined from samples taken 13 days apart with both belonging to Pango lineage FL.2: the first detection of this Omicron sub-variant in Botswana. FL.2 is a sub-lineage of XBB.1.9.1. The repertoire of mutations and minority variants in the Spike protein differed between the two time points. Notably, we also observed deletions within the ORF1a and Membrane proteins; both regions are associated with high T-cell epitope density. The internal milieu of immune-suppressed individuals may accelerate SARS-CoV-2 evolution; hence, close monitoring is warranted.Supported by the Sub-Saharan African Network for TB/HIV Research Excellence (SANTHE) which is funded by the Science for Africa Foundation to the Developing Excellence in Leadership, Training and Science in Africa (DELTAS Africa) programme [Del-22-007] with support from Wellcome Trust and the UK Foreign, Commonwealth & Development Office and is part of the EDCPT2 programme supported by the European Union; the Bill & Melinda Gates Foundation [INV-033558]; and Gilead Sciences Inc., [19275]. This work was also supported by the National Institutes of Health NIH Fogarty International Center K43 TW012350. Sequencing was supported by funding from the Foundation for Innovation in Diagnostics, the Bill and Melinda Gates Foundation, the National Institutes of Health Fogarty International Centre, the HHS/NIH/National Institute of Allergy and Infectious Diseases (NIAID) and the Africa Centers of Disease Control through the Pathogen Genomics Initiative.http://www.elsevier.com/locate/ijidhj2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein
Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa
Three lineages (BA.1, BA.2 and BA.3) of the SARS-CoV-2 Omicron variant of concern predominantly drove South Africa's fourth COVID-19 wave. We have now identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections. The spike proteins of BA.4 and BA.5 are identical, and comparable to BA.2 except for the addition of 69-70del (present in the Alpha variant and the BA.1 lineage), L452R (present in the Delta variant), F486V and the wild type amino acid at Q493.The two lineages only differ outside of the spike region. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure, on the background of variants not possessing this feature . BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa by the first week of April 2022. Using a multinomial logistic regression model, we estimate growth advantages for BA.4 and BA.5 of 0.08 (95% CI: 0.08 - 0.09) and 0.10 (95% CI: 0.09 - 0.11) per day respectively over BA.2 in South Africa. The continued discovery of genetically diverse Omicron lineages points to the hypothesis that a discrete reservoir, such as human chronic infections and/or animal hosts, is potentially contributing to further evolution and dispersal of the virus
Growth and CD4 patterns of adolescents living with perinatally acquired HIV worldwide, a CIPHER cohort collaboration analysis.
INTRODUCTION
Adolescents living with HIV are subject to multiple co-morbidities, including growth retardation and immunodeficiency. We describe growth and CD4 evolution during adolescence using data from the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) global project.
METHODS
Data were collected between 1994 and 2015 from 11 CIPHER networks worldwide. Adolescents with perinatally acquired HIV infection (APH) who initiated antiretroviral therapy (ART) before age 10 years, with at least one height or CD4 count measurement while aged 10-17 years, were included. Growth was measured using height-for-age Z-scores (HAZ, stunting if <-2 SD, WHO growth charts). Linear mixed-effects models were used to study the evolution of each outcome between ages 10 and 17. For growth, sex-specific models with fractional polynomials were used to model non-linear relationships for age at ART initiation, HAZ at age 10 and time, defined as current age from 10 to 17 years of age.
RESULTS
A total of 20,939 and 19,557 APH were included for the growth and CD4 analyses, respectively. Half were females, two-thirds lived in East and Southern Africa, and median age at ART initiation ranged from 7 years in sub-Saharan African regions. At age 10, stunting ranged from 6% in North America and Europe to 39% in the Asia-Pacific; 19% overall had CD4 counts <500 cells/mm3 . Across adolescence, higher HAZ was observed in females and among those in high-income countries. APH with stunting at age 10 and those with late ART initiation (after age 5) had the largest HAZ gains during adolescence, but these gains were insufficient to catch-up with non-stunted, early ART-treated adolescents. From age 10 to 16 years, mean CD4 counts declined from 768 to 607 cells/mm3 . This decline was observed across all regions, in males and females.
CONCLUSIONS
Growth patterns during adolescence differed substantially by sex and region, while CD4 patterns were similar, with an observed CD4 decline that needs further investigation. Early diagnosis and timely initiation of treatment in early childhood to prevent growth retardation and immunodeficiency are critical to improving APH growth and CD4 outcomes by the time they reach adulthood
Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in southern Africa has been characterised by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, whilst the second and third waves were driven by the Beta and Delta variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng Province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, predicted to influence antibody neutralization and spike function4. Here, we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity
High-depth African genomes inform human migration and health
The African continent is regarded as the cradle of modern humans and African genomes contain more genetic variation than those from any other continent, yet only a fraction of the genetic diversity among African individuals has been surveyed1. Here we performed whole-genome sequencing analyses of 426 individuals—comprising 50 ethnolinguistic groups, including previously unsampled populations—to explore the breadth of genomic diversity across Africa. We uncovered more than 3 million previously undescribed variants, most of which were found among individuals from newly sampled ethnolinguistic groups, as well as 62 previously unreported loci that are under strong selection, which were predominantly found in genes that are involved in viral immunity, DNA repair and metabolism. We observed complex patterns of ancestral admixture and putative-damaging and novel variation, both within and between populations, alongside evidence that Zambia was a likely intermediate site along the routes of expansion of Bantu-speaking populations. Pathogenic variants in genes that are currently characterized as medically relevant were uncommon—but in other genes, variants denoted as ‘likely pathogenic’ in the ClinVar database were commonly observed. Collectively, these findings refine our current understanding of continental migration, identify gene flow and the response to human disease as strong drivers of genome-level population variation, and underscore the scientific imperative for a broader characterization of the genomic diversity of African individuals to understand human ancestry and improve health
High-depth African genomes inform human migration and health
The African continent is regarded as the cradle of modern humans and African genomes contain more genetic variation than those from any other continent, yet only a fraction of the genetic diversity among African individuals has been surveyed1. Here we performed whole-genome sequencing analyses of 426 individuals—comprising 50 ethnolinguistic groups, including previously unsampled populations—to explore the breadth of genomic diversity across Africa. We uncovered more than 3 million previously undescribed variants, most of which were found among individuals from newly sampled ethnolinguistic groups, as well as 62 previously unreported loci that are under strong selection, which were predominantly found in genes that are involved in viral immunity, DNA repair and metabolism. We observed complex patterns of ancestral admixture and putative-damaging and novel variation, both within and between populations, alongside evidence that Zambia was a likely intermediate site along the routes of expansion of Bantu-speaking populations. Pathogenic variants in genes that are currently characterized as medically relevant were uncommon—but in other genes, variants denoted as ‘likely pathogenic’ in the ClinVar database were commonly observed. Collectively, these findings refine our current understanding of continental migration, identify gene flow and the response to human disease as strong drivers of genome-level population variation, and underscore the scientific imperative for a broader characterization of the genomic diversity of African individuals to understand human ancestry and improve health
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Feeding back of individual genetic results in Botswana: mapping opportunities and challenges
Abstract Purpose We explored the views of Botswana stakeholders involved in developing, implementing and applying ethical standards for return of individual study results from genomic research. This allowed for mapping opportunities and challenges regarding actionability requirements that determine whether individual genomic research results should be fed back. Methods Using in-depth interviews, this study explored the views of sixteen (16) stakeholders about the extent, nature and timing of feedback of individual genomic research findings, including incidental findings that arise in the context of African genomics research. Coded data was analyzed through an iterative process of analytic induction to document and interpret themes. Results Overall, respondents were of the view that feedback of actionable individual genomic results was an important outcome that could benefit participants. However, a number of themes surfaced that pointed to opportunities and challenges that exist in Botswana that could help in planning for feeding back of individual genomic results that were mapped. Some of the opportunities cited by the respondents included the existence of good governance; democracy and humanitarianism; universal healthcare system; national commitment to science; research and innovation to transform Botswana into a knowledge-based economy; and applicable standard of care which could promote actionability. On the other hand, contextual issues like the requirement for validation of genomic research results in accredited laboratories, high cost of validation of genomic results, and linkage to care, as well as lack of experts like genomic scientists and counselors were considered as challenges for return of individual results. Conclusion We propose that decisions whether and which genomic results to return take into consideration contextual opportunities and challenges for actionability for return of results in a research setting. This is likely to avoid or minimize ethical issues of justice, equity and harm regarding actionability decisions