12 research outputs found

    Hypoxia regulates DPP4 expression, proteolytic inactivation, and shedding from ovarian cancer cells

    No full text
    The treatment of ovarian cancer has not significantly changed in decades and it remains one of the most lethal malignancies in women. The serine protease dipeptidyl peptidase 4 (DPP4) plays key roles in metabolism and immunity, and its expression has been associated with either pro- or anti-tumour effects in multiple tumour types. In this study, we provide the first evidence that DPP4 expression and enzyme activity are uncoupled under hypoxic conditions in ovarian cancer cells. Whilst we identified strong up-regulation of DPP4 mRNA expression under hypoxic growth, the specific activity of secreted DPP4 was paradoxically decreased. Further investigation revealed matrix metalloproteinases (MMP)-dependent inactivation and proteolytic shedding of DPP4 from the cell surface, mediated by at least MMP10 and MMP13. This is the first report of uncoupled DPP4 expression and activity in ovarian cancer cells, and suggests a previously unrecognized, cell- and tissue-type-dependent mechanism for the regulation of DPP4 in solid tumours. Further studies are necessary to identify the functional consequences of DPP4 processing and its potential prognostic or therapeutic value.Laura R. Moffitt, Maree Bilandzic, Amy L. Wilson, Yiqian Chen, Mark D. Gorrell, Martin K. Oehler ... et al

    Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility: results from a large-scale collaboration

    Get PDF
    RNA editing in mammals is a form of post-transcriptional modification in which adenosine is converted to inosine by the adenosine deaminases acting on RNA (ADAR) family of enzymes. Based on evidence of altered ADAR expression in epithelial ovarian cancers (EOC), we hypothesized that single nucleotide polymorphisms (SNPs) in ADAR genes modify EOC susceptibility, potentially by altering ovarian tissue gene expression. Using directly genotyped and imputed data from 10,891 invasive EOC cases and 21,693 controls, we evaluated the associations of 5,303 SNPs in ADAD1, ADAR, ADAR2, ADAR3, and SND1. Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI), with adjustment for European ancestry. We conducted gene-level analyses using the Admixture Maximum Likelihood (AML) test and the Sequence-Kernel Association test for common and rare variants (SKAT-CR). Association analysis revealed top risk-associated SNP rs77027562 (OR (95% CI)= 1.39 (1.17-1.64), P=1.0x10-4) in ADAR3 and rs185455523 in SND1 (OR (95% CI)= 0.68 (0.56-0.83), P=2.0x10-4). When restricting to serous histology (n=6,500), the magnitude of association strengthened for rs185455523 (OR=0.60, P=1.0x10-4). Gene-level analyses revealed that variation in ADAR was associated (P<0.05) with EOC susceptibility, with PAML=0.022 and PSKAT-CR=0.020. Expression quantitative trait locus analysis in EOC tissue revealed significant associations (P<0.05) with ADAR expression for several SNPs in ADAR, including rs1127313 (G/A), a SNP in the 3' untranslated region. In summary, germline variation involving RNA editing genes may influence EOC susceptibility, warranting further investigation of inherited and acquired alterations affecting RNA editing

    Serotonin and Human Violence

    No full text
    corecore