2,679 research outputs found

    Gravitational Waves in the Nonsymmetric Gravitational Theory

    Get PDF
    We prove that the flux of gravitational radiation from an isolated source in the Nonsymmetric Gravitational Theory is identical to that found in Einstein's General Theory of Relativity.Comment: 10 Page

    Gravitational solution to the Pioneer 10/11 anomaly

    Full text link
    A fully relativistic modified gravitational theory including a fifth force skew symmetric field is fitted to the Pioneer 10/11 anomalous acceleration. The theory allows for a variation with distance scales of the gravitational constant G, the fifth force skew symmetric field coupling strength omega and the mass of the skew symmetric field mu=1/lambda. A fit to the available anomalous acceleration data for the Pioneer 10/11 spacecraft is obtained for a phenomenological representation of the "running" constants and values of the associated parameters are shown to exist that are consistent with fifth force experimental bounds. The fit to the acceleration data is consistent with all current satellite, laser ranging and observations for the inner planets.Comment: 14 pages, 3 figures, 3 tables. typo's were corrected at Equations (4) and (12) and a third table including our predictions for the anomalous perihelion advance of the planets was adde

    Boundary Operators in Quantum Field Theory

    Get PDF
    The fundamental laws of physics can be derived from the requirement of invariance under suitable classes of transformations on the one hand, and from the need for a well-posed mathematical theory on the other hand. As a part of this programme, the present paper shows under which conditions the introduction of pseudo-differential boundary operators in one-loop Euclidean quantum gravity is compatible both with their invariance under infinitesimal diffeomorphisms and with the requirement of a strongly elliptic theory. Suitable assumptions on the kernel of the boundary operator make it therefore possible to overcome problems resulting from the choice of purely local boundary conditions.Comment: 23 pages, plain Tex. The revised version contains a new section, and the presentation has been improve

    Regulation of neuronal excitability through pumilio-dependent control of a sodium channel gene

    Get PDF
    Dynamic changes in synaptic connectivity and strength, which occur during both embryonic development and learning, have the tendency to destabilize neural circuits. To overcome this, neurons have developed a diversity of homeostatic mechanisms to maintain firing within physiologically defined limits. In this study, we show that activity-dependent control of mRNA for a specific voltage-gated Na+ channel [encoded by paralytic (para)] contributes to the regulation of membrane excitability in Drosophila motoneurons. Quantification of para mRNA, by real-time reverse-transcription PCR, shows that levels are significantly decreased in CNSs in which synaptic excitation is elevated, whereas, conversely, they are significantly increased when synaptic vesicle release is blocked. Quantification of mRNA encoding the translational repressor pumilio (pum) reveals a reciprocal regulation to that seen for para. Pumilio is sufficient to influence para mRNA. Thus, para mRNA is significantly elevated in a loss-of-function allele of pum (pumbemused), whereas expression of a full-length pum transgene is sufficient to reduce para mRNA. In the absence of pum, increased synaptic excitation fails to reduce para mRNA, showing that Pum is also necessary for activity-dependent regulation of para mRNA. Analysis of voltage-gated Na+ current (INa) mediated by para in two identified motoneurons (termed aCC and RP2) reveals that removal of pum is sufficient to increase one of two separable INa components (persistent INa), whereas overexpression of a pum transgene is sufficient to suppress both components (transient and persistent). We show, through use of anemone toxin (ATX II), that alteration in persistent INa is sufficient to regulate membrane excitability in these two motoneurons

    Nonexistence theorems for traversable wormholes

    Full text link
    Gauss-Bonnet formula is used to derive a new and simple theorem of nonexistence of vacuum static nonsingular lorentzian wormholes. We also derive simple proofs for the nonexistence of lorentzian wormhole solutions for some classes of static matter such as, for instance, real scalar fields with a generic potential obeying ϕV′(ϕ)≥0\phi V'(\phi) \ge 0 and massless fermions fields

    Time Delay Predictions in a Modified Gravity Theory

    Full text link
    The time delay effect for planets and spacecraft is obtained from a fully relativistic modified gravity theory including a fifth force skew symmetric field by fitting to the Pioneer 10/11 anomalous acceleration data. A possible detection of the predicted time delay corrections to general relativity for the outer planets and future spacecraft missions is considered. The time delay correction to GR predicted by the modified gravity is consistent with the observational limit of the Doppler tracking measurement reported by the Cassini spacecraft on its way to Saturn, and the correction increases to a value that could be measured for a spacecraft approaching Neptune and Pluto.Comment: 5 pages, LaTex file, no figures. Corrections to Table

    Field Equations and Conservation Laws in the Nonsymmetric Gravitational Theory

    Get PDF
    The field equations in the nonsymmetric gravitational theory are derived from a Lagrangian density using a first-order formalism. Using the general covariance of the Lagrangian density, conservation laws and tensor identities are derived. Among these are the generalized Bianchi identities and the law of energy-momentum conservation. The Lagrangian density is expanded to second-order, and treated as an ``Einstein plus fields'' theory. From this, it is deduced that the energy is positive in the radiation zone.Comment: 16 pages, RevTeX. Additional equations supplie

    On the origin of variable structures in the winds of hot luminous stars

    Full text link
    Examination of the temporal variability properties of several strong optical recombination lines in a large sample of Galactic Wolf-Rayet (WR) stars reveals possible trends, especially in the more homogeneous WC than the diverse WN subtypes, of increasing wind variability with cooler subtypes. This could imply that a serious contender for the driver of the variations is stochastic, magnetic subsurface convection associated with the 170 kK partial-ionization zone of iron, which should occupy a deeper and larger zone of greater mass in cooler WR subtypes. This empirical evidence suggests that the heretofore proposed ubiquitous driver of wind variability, radiative instabilities, may not be the only mechanism playing a role in the stochastic multiple small-scaled structures seen in the winds of hot luminous stars. In addition to small-scale stochastic behaviour, subsurface convection guided by a global magnetic field with localized emerging loops may also be at the origin of the large-scale corotating interaction regions as seen frequently in O stars and occasionally in the winds of their descendant WR stars.Comment: 8 pages, 2 figures and 2 tables. Monthly Notices of the Royal Astronomical Society 201
    • …
    corecore