Examination of the temporal variability properties of several strong optical
recombination lines in a large sample of Galactic Wolf-Rayet (WR) stars reveals
possible trends, especially in the more homogeneous WC than the diverse WN
subtypes, of increasing wind variability with cooler subtypes. This could imply
that a serious contender for the driver of the variations is stochastic,
magnetic subsurface convection associated with the 170 kK partial-ionization
zone of iron, which should occupy a deeper and larger zone of greater mass in
cooler WR subtypes. This empirical evidence suggests that the heretofore
proposed ubiquitous driver of wind variability, radiative instabilities, may
not be the only mechanism playing a role in the stochastic multiple
small-scaled structures seen in the winds of hot luminous stars. In addition to
small-scale stochastic behaviour, subsurface convection guided by a global
magnetic field with localized emerging loops may also be at the origin of the
large-scale corotating interaction regions as seen frequently in O stars and
occasionally in the winds of their descendant WR stars.Comment: 8 pages, 2 figures and 2 tables. Monthly Notices of the Royal
Astronomical Society 201