2,394 research outputs found

    The Potential of Learned Index Structures for Index Compression

    Full text link
    Inverted indexes are vital in providing fast key-word-based search. For every term in the document collection, a list of identifiers of documents in which the term appears is stored, along with auxiliary information such as term frequency, and position offsets. While very effective, inverted indexes have large memory requirements for web-sized collections. Recently, the concept of learned index structures was introduced, where machine learned models replace common index structures such as B-tree-indexes, hash-indexes, and bloom-filters. These learned index structures require less memory, and can be computationally much faster than their traditional counterparts. In this paper, we consider whether such models may be applied to conjunctive Boolean querying. First, we investigate how a learned model can replace document postings of an inverted index, and then evaluate the compromises such an approach might have. Second, we evaluate the potential gains that can be achieved in terms of memory requirements. Our work shows that learned models have great potential in inverted indexing, and this direction seems to be a promising area for future research.Comment: Will appear in the proceedings of ADCS'1

    Binary planetary nebulae nuclei towards the Galactic bulge. II. A penchant for bipolarity and low-ionisation structures

    Full text link
    Considerable effort has been applied towards understanding the precise shaping mechanisms responsible for the diverse range of morphologies exhibited by planetary nebulae (PNe). A binary companion is increasingly gaining support as a dominant shaping mechanism, however morphological studies of the few PNe that we know for certain were shaped by binary evolution are scarce or biased. Newly discovered binary central stars (CSPN) from the OGLE-III photometric variability survey have significantly increased the sample of post common-envelope (CE) nebulae available for morphological analysis. We present Gemini South narrow-band images for most of the new sample to complement existing data in a qualitative morphological study of 30 post-CE nebulae. Nearly 30% of nebulae have canonical bipolar morphologies, however this rises to 60% once inclination effects are incorporated with the aid of geometric models. This is the strongest observational evidence yet linking CE evolution to bipolar morphologies. A higher than average proportion of the sample shows low-ionisation knots, filaments or jets suggestive of a binary origin. These features are also common around emission-line nuclei which may be explained by speculative binary formation scenarios for H-deficient CSPN.Comment: Accepted for publication in A&

    Field Equations and Conservation Laws in the Nonsymmetric Gravitational Theory

    Get PDF
    The field equations in the nonsymmetric gravitational theory are derived from a Lagrangian density using a first-order formalism. Using the general covariance of the Lagrangian density, conservation laws and tensor identities are derived. Among these are the generalized Bianchi identities and the law of energy-momentum conservation. The Lagrangian density is expanded to second-order, and treated as an ``Einstein plus fields'' theory. From this, it is deduced that the energy is positive in the radiation zone.Comment: 16 pages, RevTeX. Additional equations supplie

    NGC 3603 - a Local Template for Massive Young Clusters

    Get PDF
    We present a study of the star cluster associated with the massive Galactic HII region NGC3603 based on near-IR broad-- and narrowband observations taken with ISAAC/VLT under excellent seeing conditions (<0.4''). We discuss color-color diagrams and address the impact of the high UV flux on the disk evolution of the low-mass stars.Comment: 3 pages, 3 figures. To appear in the Proceedings of IAU Symposium 207 "Extragalactic Star Clusters", eds. E. Grebel, D. Geisler and D. Minitt

    Nonexistence theorems for traversable wormholes

    Full text link
    Gauss-Bonnet formula is used to derive a new and simple theorem of nonexistence of vacuum static nonsingular lorentzian wormholes. We also derive simple proofs for the nonexistence of lorentzian wormhole solutions for some classes of static matter such as, for instance, real scalar fields with a generic potential obeying ϕV′(ϕ)≥0\phi V'(\phi) \ge 0 and massless fermions fields

    Wormholes in spacetime with torsion

    Full text link
    Analytical wormhole solutions in U4U_4 theory are presented. It is discussed whether the extremely short range repulsive forces, related to the spin angular momentum of matter, could be the ``carrier'' of the exoticity that threads the wormhole throat.Comment: 10 pages revte

    Linearisation Instabilities of the Massive Nonsymmetric Gravitational Theory

    Get PDF
    The massive nonsymmetric gravitational theory is shown to posses a linearisation instability at purely GR field configurations, disallowing the use of the linear approximation in these situations. It is also shown that arbitrarily small antisymmetric sector Cauchy data leads to singular evolution unless an ad hoc condition is imposed on the initial data hypersurface.Comment: 14 pages, IOP style for submission to CQG. Minor changes and additional background material adde

    An Upper Limit on the Albedo of HD 209458b: Direct Imaging Photometry with the MOST Satellite

    Full text link
    We present space-based photometry of the transiting exoplanetary system HD 209458 obtained with the MOST (Microvariablity and Oscillations of STars) satellite, spanning 14 days and covering 4 transits and 4 secondary eclipses. The HD 209458 photometry was obtained in MOST's lower-precision Direct Imaging mode, which is used for targets in the brightness range 6.5<V<136.5 < V < 13. We describe the photometric reduction techniques for this mode of observing, in particular the corrections for stray Earthshine. We do not detect the secondary eclipse in the MOST data, to a limit in depth of 0.053 mmag (1 \sigma). We set a 1 \sigma upper limit on the planet-star flux ratio of 4.88 x 10^-5 corresponding to a geometric albedo upper limit in the MOST bandpass (400 to 700 nm) of 0.25. The corresponding numbers at the 3 \sigma level are 1.34 x 10^-4 and 0.68 respectively. HD 209458b is half as bright as Jupiter in the MOST bandpass. This low geometric albedo value is an important constraint for theoretical models of the HD209458b atmosphere, in particular ruling out the presence of reflective clouds. A second MOST campaign on HD 209458 is expected to be sensitive to an exoplanet albedo as low as 0.13 (1 sigma), if the star does not become more intrinsically variable in the meantime.Comment: 29 pages, 9 figures. Accepted for publication in the Astrophysical Journal (July 2006, v645n1

    Geodesic and Path Motion in the Nonsymmetric Gravitational Theory

    Full text link
    We study the problem of test-particle motion in the Nonsymmetric Gravitational Theory (NGT) assuming the four-velocity of the particle is parallel-transported along the trajectory. The predicted motion is studied on a static, spherically symmetric background field, with particular attention paid to radial and circular motions. Interestingly, it is found that the proper time taken to travel between any two non-zero radial positions is finite. It is also found that circular orbits can be supported at lower radii than in General Relativity for certain forms of motion. We present three interactions which could be used as alternate methods for coupling a test-particle to the antisymmetric components of the NGT field. One of these takes the form of a Yukawa force in the weak-field limit of a static, spherically symmetric field, which could lead to interesting phenomenology.Comment: 17 pages, REVTeX 3.0 with amssymb.st
    • …
    corecore