54 research outputs found

    Sequential Monte Carlo EM for multivariate probit models

    Full text link
    Multivariate probit models (MPM) have the appealing feature of capturing some of the dependence structure between the components of multidimensional binary responses. The key for the dependence modelling is the covariance matrix of an underlying latent multivariate Gaussian. Most approaches to MLE in multivariate probit regression rely on MCEM algorithms to avoid computationally intensive evaluations of multivariate normal orthant probabilities. As an alternative to the much used Gibbs sampler a new SMC sampler for truncated multivariate normals is proposed. The algorithm proceeds in two stages where samples are first drawn from truncated multivariate Student tt distributions and then further evolved towards a Gaussian. The sampler is then embedded in a MCEM algorithm. The sequential nature of SMC methods can be exploited to design a fully sequential version of the EM, where the samples are simply updated from one iteration to the next rather than resampled from scratch. Recycling the samples in this manner significantly reduces the computational cost. An alternative view of the standard conditional maximisation step provides the basis for an iterative procedure to fully perform the maximisation needed in the EM algorithm. The identifiability of MPM is also thoroughly discussed. In particular, the likelihood invariance can be embedded in the EM algorithm to ensure that constrained and unconstrained maximisation are equivalent. A simple iterative procedure is then derived for either maximisation which takes effectively no computational time. The method is validated by applying it to the widely analysed Six Cities dataset and on a higher dimensional simulated example. Previous approaches to the Six Cities overly restrict the parameter space but, by considering the correct invariance, the maximum likelihood is quite naturally improved when treating the full unrestricted model.Comment: 26 pages, 2 figures. In press, Computational Statistics & Data Analysi

    Partition MCMC for inference on acyclic digraphs

    Full text link
    Acyclic digraphs are the underlying representation of Bayesian networks, a widely used class of probabilistic graphical models. Learning the underlying graph from data is a way of gaining insights about the structural properties of a domain. Structure learning forms one of the inference challenges of statistical graphical models. MCMC methods, notably structure MCMC, to sample graphs from the posterior distribution given the data are probably the only viable option for Bayesian model averaging. Score modularity and restrictions on the number of parents of each node allow the graphs to be grouped into larger collections, which can be scored as a whole to improve the chain's convergence. Current examples of algorithms taking advantage of grouping are the biased order MCMC, which acts on the alternative space of permuted triangular matrices, and non ergodic edge reversal moves. Here we propose a novel algorithm, which employs the underlying combinatorial structure of DAGs to define a new grouping. As a result convergence is improved compared to structure MCMC, while still retaining the property of producing an unbiased sample. Finally the method can be combined with edge reversal moves to improve the sampler further.Comment: Revised version. 34 pages, 16 figures. R code available at https://github.com/annlia/partitionMCM

    The Variance of Causal Effect Estimators for Binary V-structures

    Full text link
    Adjusting for covariates is a well established method to estimate the total causal effect of an exposure variable on an outcome of interest. Depending on the causal structure of the mechanism under study there may be different adjustment sets, equally valid from a theoretical perspective, leading to identical causal effects. However, in practice, with finite data, estimators built on different sets may display different precision. To investigate the extent of this variability we consider the simplest non-trivial non-linear model of a v-structure on three nodes for binary data. We explicitly compute and compare the variance of the two possible different causal estimators. Further, by going beyond leading order asymptotics we show that there are parameter regimes where the set with the asymptotically optimal variance does depend on the edge coefficients, a result which is not captured by the recent leading order developments for general causal models.Comment: 14 pages, 2 figure

    A new way to evaluate G-Wishart normalising constants via Fourier analysis

    Full text link
    The G-Wishart distribution is an essential component for the Bayesian analysis of Gaussian graphical models as the conjugate prior for the precision matrix. Evaluating the marginal likelihood of such models usually requires computing high-dimensional integrals to determine the G-Wishart normalising constant. Closed-form results are known for decomposable or chordal graphs, while an explicit representation as a formal series expansion has been derived recently for general graphs. The nested infinite sums, however, do not lend themselves to computation, remaining of limited practical value. Borrowing techniques from random matrix theory and Fourier analysis, we provide novel exact results well suited to the numerical evaluation of the normalising constant for a large class of graphs beyond chordal graphs. Furthermore, they open new possibilities for developing more efficient sampling schemes for Bayesian inference of Gaussian graphical models

    Efficient Sampling and Structure Learning of Bayesian Networks

    Full text link
    Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high dimensional data, and even to facilitate causal discovery. Learning the underlying network structure, which is encoded as a directed acyclic graph (DAG) is highly challenging mainly due to the vast number of possible networks. Efforts have focussed on two fronts: constraint-based methods that perform conditional independence tests to exclude edges and score and search approaches which explore the DAG space with greedy or MCMC schemes. Here we synthesise these two fields in a novel hybrid method which reduces the complexity of MCMC approaches to that of a constraint-based method. Individual steps in the MCMC scheme only require simple table lookups so that very long chains can be efficiently obtained. Furthermore, the scheme includes an iterative procedure to correct for errors from the conditional independence tests. The algorithm offers markedly superior performance to alternatives, particularly because DAGs can also be sampled from the posterior distribution, enabling full Bayesian model averaging for much larger Bayesian networks.Comment: Revised version. 40 pages including 16 pages of supplement, 5 figures and 15 supplemental figures; R package BiDAG is available at https://CRAN.R-project.org/package=BiDA

    Learning Bayesian Networks from Ordinal Data

    Get PDF
    Bayesian networks are a powerful framework for studying the dependency structure of variables in a complex system. The problem of learning Bayesian networks is tightly associated with the given data type. Ordinal data, such as stages of cancer, rating scale survey questions, and letter grades for exams, are ubiquitous in applied research. However, existing solutions are mainly for continuous and nominal data. In this work, we propose an iterative score-and-search method - called the Ordinal Structural EM (OSEM) algorithm - for learning Bayesian networks from ordinal data. Unlike traditional approaches designed for nominal data, we explicitly respect the ordering amongst the categories. More precisely, we assume that the ordinal variables originate from marginally discretizing a set of Gaussian variables, whose structural dependence in the latent space follows a directed acyclic graph. Then, we adopt the Structural EM algorithm and derive closed-form scoring functions for efficient graph searching. Through simulation studies, we illustrate the superior performance of the OSEM algorithm compared to the alternatives and analyze various factors that may influence the learning accuracy. Finally, we demonstrate the practicality of our method with a real-world application on psychological survey data from 408 patients with co-morbid symptoms of obsessive-compulsive disorder and depression

    Learning Bayesian Networks from Ordinal Data

    Get PDF
    Bayesian networks are a powerful framework for studying the dependency structure of variables in a complex system. The problem of learning Bayesian networks is tightly associated with the given data type. Ordinal data, such as stages of cancer, rating scale survey questions, and letter grades for exams, are ubiquitous in applied research. However, existing solutions are mainly for continuous and nominal data. In this work, we propose an iterative score-and-search method - called the Ordinal Structural EM (OSEM) algorithm - for learning Bayesian networks from ordinal data. Unlike traditional approaches designed for nominal data, we explicitly respect the ordering amongst the categories. More precisely, we assume that the ordinal variables originate from marginally discretizing a set of Gaussian variables, whose structural dependence in the latent space follows a directed acyclic graph. Then, we adopt the Structural EM algorithm and derive closed-form scoring functions for efficient graph searching. Through simulation studies, we illustrate the superior performance of the OSEM algorithm compared to the alternatives and analyze various factors that may influence the learning accuracy. Finally, we demonstrate the practicality of our method with a real-world application on psychological survey data from 408 patients with co-morbid symptoms of obsessive-compulsive disorder and depression

    Benchpress: a scalable and platform-independent workflow for benchmarking structure learning algorithms for graphical models

    Full text link
    Describing the relationship between the variables in a study domain and modelling the data generating mechanism is a fundamental problem in many empirical sciences. Probabilistic graphical models are one common approach to tackle the problem. Learning the graphical structure is computationally challenging and a fervent area of current research with a plethora of algorithms being developed. To facilitate the benchmarking of different methods, we present a novel automated workflow, called benchpress for producing scalable, reproducible, and platform-independent benchmarks of structure learning algorithms for probabilistic graphical models. Benchpress is interfaced via a simple JSON-file, which makes it accessible for all users, while the code is designed in a fully modular fashion to enable researchers to contribute additional methodologies. Benchpress currently provides an interface to a large number of state-of-the-art algorithms from libraries such as BiDAG, bnlearn, GOBNILP, pcalg, r.blip, scikit-learn, TETRAD, and trilearn as well as a variety of methods for data generating models and performance evaluation. Alongside user-defined models and randomly generated datasets, the software tool also includes a number of standard datasets and graphical models from the literature, which may be included in a benchmarking workflow. We demonstrate the applicability of this workflow for learning Bayesian networks in four typical data scenarios. The source code and documentation is publicly available from http://github.com/felixleopoldo/benchpress.Comment: 30 pages, 1 figur

    Bayesian Structure Learning and Sampling of Bayesian Networks with the R Package BiDAG

    Get PDF
    The R package BiDAG implements Markov chain Monte Carlo (MCMC) methods for structure learning and sampling of Bayesian networks. The package includes tools to search for a maximum a posteriori (MAP) graph and to sample graphs from the posterior distribution given the data. A new hybrid approach to structure learning enables inference in large graphs. In the first step, we define a reduced search space by means of the PC algorithm or based on prior knowledge. In the second step, an iterative order MCMC scheme proceeds to optimize the restricted search space and estimate the MAP graph. Sampling from the posterior distribution is implemented using either order or partition MCMC. The models and algorithms can handle both discrete and continuous data. The BiDAG package also provides an implementation of MCMC schemes for structure learning and sampling of dynamic Bayesian networks

    Sexual abuse and psychotic phenomena: a directed acyclic graph analysis of affective symptoms using English national psychiatric survey data

    Get PDF
    Background: Sexual abuse and bullying are associated with poor mental health in adulthood. We previously established a clear relationship between bullying and symptoms of psychosis. Similarly, we would expect sexual abuse to be linked to the emergence of psychotic symptoms, through effects on negative affect. // Method: We analysed English data from the Adult Psychiatric Morbidity Surveys, carried out in 2007 (N = 5954) and 2014 (N = 5946), based on representative national samples living in private households. We used probabilistic graphical models represented by directed acyclic graphs (DAGs). We obtained measures of persecutory ideation and auditory hallucinosis from the Psychosis Screening Questionnaire, and identified affective symptoms using the Clinical Interview Schedule. We included cannabis consumption and sex as they may determine the relationship between symptoms. We constrained incoming edges to sexual abuse and bullying to respect temporality. // Results: In the DAG analyses, contrary to our expectations, paranoia appeared early in the cascade of relationships, close to the abuse variables, and generally lying upstream of affective symptoms. Paranoia was consistently directly antecedent to hallucinations, but also indirectly so, via non-psychotic symptoms. Hallucinosis was also the endpoint of pathways involving non-psychotic symptoms. // Conclusions: Via worry, sexual abuse and bullying appear to drive a range of affective symptoms, and in some people, these may encourage the emergence of hallucinations. The link between adverse experiences and paranoia is much more direct. These findings have implications for managing distressing outcomes. In particular, worry may be a salient target for intervention in psychosis
    • …
    corecore