256 research outputs found
Electronic band gap reduction and intense luminescence in Co and Mn ion-implanted SiO
Cobalt and manganese ions are implanted into SiO over a wide range of
concentrations. For low concentrations, the Co atoms occupy interstitial
locations, coordinated with oxygen, while metallic Co clusters form at higher
implantation concentrations. For all concentrations studied here, Mn ions
remain in interstitial locations and do not cluster. Using resonant x-ray
emission spectroscopy and Anderson impurity model calculations, we determine
the strength of the covalent interaction between the interstitial ions and the
SiO valence band, finding it comparable to Mn and Co monoxides. Further, we
find an increasing reduction in the SiO electronic band gap for increasing
implantation concentration, due primarily to the introduction of Mn- and
Co-derived conduction band states. We also observe a strong increase in a band
of x-ray stimulated luminescence at 2.75 eV after implantation, attributed to
oxygen deficient centers formed during implantation.Comment: 8 pages, 6 figure
Electronic Structure of Cu_(1-x)Ni_xRh_2S_4 and CuRh_2Se_4: Band Structure Calculations, X-ray Photoemission and Fluorescence Measurements
The electronic structure of spinel-type Cu_(1-x)Ni_xRh_2S_4 (x = 0.0, 0.1,
0.3, 0.5, 1.0) and CuRh_2Se_4 compounds has been studied by means of X-ray
photoelectron and fluorescent spectroscopy. Cu L_3, Ni L_3, S L_(2,3) and Se
M_(2,3) X-ray emission spectra (XES) were measured near thresholds at Beamline
8.0 of the Lawrence Berkeley Laboratory's Advanced Light Source. XES
measurements of the constituent atoms of these compounds, reduced to the same
binding energy scale, are found to be in excellent agreement with XPS valence
bands. The calculated XES spectra which include dipole matrix elements show
that the partial density of states reproduce experimental spectra quite well.
States near the Fermi level (E_F) have strong Rh d and S(Se) p character in all
compounds. In NiRh_2S_4 the Ni 3d states contribute strongly at E_F, whereas in
both Cu compounds the Cu 3d bands are only ~1 eV wide and centered ~2.5 eV
below E_F, leaving very little 3d character at E_F. The density of states at
the Fermi level is less in NiRh_2S_4 than in CuRh_2S_4. This difference may
contribute to the observed decrease, as a function of Ni concentration, in the
superconducting transition temperature in Cu_(1-x)Ni_xRh_2S_4. The density of
states of the ordered alloy Cu_(1/2)Ni_(1/2)Rh_2S_4 shows behavior that is more
``split-band''-like than ``rigid band''-like.Comment: 7 pages of text, 11 trailing figures, updated to fix faulty
postscript in Fig.
- …