833 research outputs found

    Generic mixed columnar-plaquette phases in Rokhsar-Kivelson models

    Full text link
    We revisit the phase diagram of Rokhsar-Kivelson models, which are used in fields such as superconductivity, frustrated magnetism, cold bosons, and the physics of Josephson junction arrays. From an extended height effective theory, we show that one of two simple generic phase diagrams contains a mixed phase that interpolates continuously between columnar and plaquette states. For the square lattice quantum dimer model we present evidence from exact diagonalization and Green's function Monte Carlo techniques that this scenario is realised, by combining an analysis of the excitation gaps of different symmetry sectors with information on plaquette structure factors. This presents a natural framework for resolving the disagreement between previous studies.Comment: 4 pages, 5 figure

    Coexistence of long-range and algebraic correlations for short-range valence-bond wave functions in three dimensions

    Full text link
    We investigate nearest-neighbor valence-bond wave functions on bipartite three-dimensional lattices. By performing large-scale Monte Carlo simulations, we find that long-range magnetic order coexists with dipolar four-spin correlations on the cubic lattice, this latter feature being reminiscent of the Coulomb phase for classical dimers on the same lattice. Similar properties are found for the lower-coordination diamond lattice. While this suggests that the coexistence of magnetic order and dipolar four-spin correlations is generic for bipartite three-dimensional lattices, we show that simple generalizations of these wave functions can encode different ordering behaviors.Comment: 4+ pages, 5 figures. Updated version, to appear in Phys. Rev. Let

    Ground state and low-lying excitations of the spin-1/2 XXZ model on the kagome lattice at magnetization 1/3

    Full text link
    We study the ground state and low-lying excitations of the S=1/2 XXZ antiferromagnet on the kagome lattice at magnetization one third of the saturation. An exponential number of non-magnetic states is found below a magnetic gap. The non-magnetic excitations also have a gap above the ground state, but it is much smaller than the magnetic gap. This ground state corresponds to an ordered pattern with resonances in one third of the hexagons. The spin-spin correlation function is short ranged, but there is long-range order of valence-bond crystal type.Comment: 2 pages, 1 figure included, to appear in Physica B (proceedings of SCES'04

    Slow relaxation and sensitivity to disorder in trapped lattice fermions after a quench

    Get PDF
    We consider a system of non-interacting fermions in one dimension subject to a single-particle potential consisting of (a) a strong optical lattice, (b) a harmonic trap, and (c) uncorrelated on-site disorder. After a quench, in which the center of the harmonic trap is displaced, we study the occupation function of the fermions and the time-evolution of experimental observables. Specifically, we present numerical and analytical results for the post-quench occupation function of the fermions, and analyse the time-evolution of the real-space density profile. Unsurprisingly for a non-interacting (and therefore integrable) system, the infinite-time limit of the density profile is non-thermal. However, due to Bragg-localization of the higher-energy single-particle states, the approach to even this non-thermal state is extremely slow. We quantify this statement, and show that it implies a sensitivity to disorder parametrically stronger than that expected from Anderson localization.Comment: 15 pages, 11 figure

    Symmetry Breaking on the Three-Dimensional Hyperkagome Lattice of Na_4Ir_3O_8

    Full text link
    We study the antiferromagnetic spin-1/2 Heisenberg model on the highly frustrated, three-dimensional, hyperkagome lattice of Na_4Ir_3O_8 using a series expansion method. We propose a valence bond crystal with a 72 site unit cell as a ground state that supports many, very low lying, singlet excitations. Low energy spinons and triplons are confined to emergent lower-dimensional motifs. Here, and for analogous kagome and pyrochlore states, we suggest finite temperature signatures, including an Ising transition, in the magnetic specific heat due to a multistep breaking of discrete symmetries.Comment: 4 pages, 3 figure

    Disorder in a quantum spin liquid: flux binding and local moment formation

    Full text link
    We study the consequences of disorder in the Kitaev honeycomb model, considering both site dilution and exchange randomness. We show that a single vacancy binds a flux and induces a local moment. This moment is polarised by an applied field hh: in the gapless phase, for small hh the local susceptibility diverges as χ(h)∌ln⁥(1/h)\chi(h)\sim\ln(1/h); for a pair of nearby vacancies on the same sublattice, this even increases to χ(h)∌1/(h[ln⁥(1/h)]3/2)\chi(h)\sim1/(h[\ln(1/h)]^{3/2}). By contrast, weak exchange randomness does not qualitatively alter the susceptibility but has its signature in the heat capacity, which in the gapless phase is power law in temperature with an exponent dependent on disorder strength.Comment: 4 pages, 2 figure

    Asymptotics of block Toeplitz determinants and the classical dimer model

    Full text link
    We compute the asymptotics of a block Toeplitz determinant which arises in the classical dimer model for the triangular lattice when considering the monomer-monomer correlation function. The model depends on a parameter interpolating between the square lattice (t=0t=0) and the triangular lattice (t=1t=1), and we obtain the asymptotics for 0<t≀10<t\le 1. For 0<t<10<t<1 we apply the Szeg\"o Limit Theorem for block Toeplitz determinants. The main difficulty is to evaluate the constant term in the asymptotics, which is generally given only in a rather abstract form

    Quasiparticle interference in iron-based superconductors

    Full text link
    We systematically calculate quasiparticle interference (QPI) signatures for the whole phase diagram of iron-based superconductors. Impurities inherent in the sample together with ordered phases lead to distinct features in the QPI images that are believed to be measured in spectroscopic imaging-scanning tunneling microscopy (SI-STM). In the spin-density wave phase the rotational symmetry of the electronic structure is broken, signatures of which are also seen in the coexistence regime with both superconducting and magnetic order. In the superconducting regime we show how the different scattering behavior for magnetic and non-magnetic impurities allows to verify the s+−s^{+-} symmetry of the order parameter. The effect of possible gap minima or nodes is discussed.Comment: 19 pages, 7 figure

    Possible Quantum Diffusion of Polaronic Muons in Dy2_2Ti2_2O7_7 Spin Ice

    Full text link
    We interpret recent measurements of the zero field muon relaxation rate in the frustrated magnetic pyrochlore Dy2_2Ti2_2O7_7 as resulting from the quantum diffusion of muons in the substance. In this scenario, the plateau observed at low temperature (<7<7 K) in the relaxation rate is due to coherent tunneling of the muons through a spatially disordered spin state and not to any magnetic fluctuations persisting at low temperature. Two further regimes either side of a maximum relaxation rate at T∗=50T^* = 50 K correspond to a crossover between tunnelling and incoherent activated hopping motion of the muon. Our fit of the experimental data is compared with the case of muonium diffusion in KCl.Comment: 15 pages, 2 figure
    • 

    corecore