448 research outputs found

    Experimental Bell Inequality Violation with an Atom and a Photon

    Full text link
    We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement characterization of this hybrid system may also be useful in quantum information applications.Comment: 4 pages, 2 figure

    Bell inequality violation with two remote atomic qubits

    Full text link
    We observe violation of a Bell inequality between the quantum states of two remote Yb ions separated by a distance of about one meter with the detection loophole closed. The heralded entanglement of two ions is established via interference and joint detection of two emitted photons, whose polarization is entangled with each ion. The entanglement of remote qubits is also characterized by full quantum state tomography.Comment: 4 pages, 4 figure

    Photon-Photon Entanglement with a Single Trapped Atom

    Full text link
    An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic - an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.Comment: 5 pages, 4 figure

    Broadband laser cooling of trapped atoms with ultrafast pulses

    Full text link
    We demonstrate broadband laser cooling of atomic ions in an rf trap using ultrafast pulses from a modelocked laser. The temperature of a single ion is measured by observing the size of a time-averaged image of the ion in the known harmonic trap potential. While the lowest observed temperature was only about 1 K, this method efficiently cools very hot atoms and can sufficiently localize trapped atoms to produce near diffraction-limited atomic images

    Complete methods set for scalable ion trap quantum information processing

    Full text link
    Large-scale quantum information processors must be able to transport and maintain quantum information, and repeatedly perform logical operations. Here we demonstrate a combination of all the fundamental elements required to perform scalable quantum computing using qubits stored in the internal states of trapped atomic ions. We quantify the repeatability of a multi-qubit operation, observing no loss of performance despite qubit transport over macroscopic distances. Key to these results is the use of different pairs of beryllium ion hyperfine states for robust qubit storage, readout and gates, and simultaneous trapping of magnesium re-cooling ions along with the qubit ions.Comment: 9 pages, 4 figures. Accepted to Science, and thus subject to a press embarg
    • …
    corecore