53 research outputs found

    Maximizing the effectiveness of qualitative systematic reviews: A case study on terrestrial arthropod conservation translocations

    Get PDF
    Systematic literature reviews are frequently used in biodiversity conservation to identify knowledge gaps and strategies for improvement. Despite their important role, systematic reviews are not standardized and often use different methods, standards for success, and data sources. We compared two systematic reviews on terrestrial arthropod conservation translocations, unknowingly conducted by two research groups at the same time. Both studies found geographic and taxonomic biases, with most projects focusing on certain countries (e.g., United States, United Kingdom) and taxa (e.g., butterflies, grasshoppers), and found similar success rates (range: 52–58%). However, the studies had different conclusions about which factors significantly influenced trans-location success, driven by the data sources used (published literature vs. data from corresponding authors). Release numbers reported by corresponding authors were approximately double those in the published literature, causing the two studies’ data sets to differ dramatically. The results show that improved communication among researchers and practitioners is needed to ensure access to current data and prevent duplication of efforts. We recommend that: i) planned, ongoing, and unpublished work be integrated as best possible in reviews; ii) expert perspectives be included alongside quantitative measures; iii) online tools be used more to promote communi-cation; iv) an online catalogue of translocation projects be established to facilitate awareness and contact among researchers; and v) standardization of translocation reporting be increased. We provide practical pathways and actions to help achieve these recommendations. These improved review practices can benefit both systematic reviewers and conservation practitioners by increasing the quality and accuracy of systematic reviews

    Addressing Threats and Ecosystem Intactness to Enable Action for Extinct in the Wild Species

    Get PDF
    The species listed as Extinct in the Wild (EW) in the IUCN Red List of Threatened Species consist of 84 plants and animals that have been lost from their indigenous range. EW species are therefore restricted to ex situ conservation facilities and often have populations founded with few individuals. Our analysis demonstrates that 60% of EW species are associated with ecoregions that have very low proportions of intact habitat. Furthermore, threats such as invasive species, pollution, and climate change affect just over half of EW species and compound the obstacles facing their reinstatement to the wild. Despite these bleak assessments, there are various options for EW recovery. We present five scenarios that encapsulate the circumstances facing EW species and suggest potential conservation action for each of these situations. We illustrate these scenarios using case studies of EW species that demonstrate how the various options of ex situ management, reintroduction, and assisted colonisation to new habitat can be used to address the very exacting requirements of EW species. Our aim is to present a broad review of the obstacles facing the recovery of EW species whilst inspiring action to prevent the extinction of the most imperilled species on the planet

    Extinct in the wild: The precarious state of Earth's most threatened group of species

    Get PDF
    Extinct in the Wild (EW) species are placed at the highest risk of extinction under the International Union for Conservation of Nature Red List, but the extent and variation in this risk have never been evaluated. Harnessing global databases of ex situ animal and plant holdings, we report on the perilous state of EW species. Most EW animal species-already compromised by their small number of founders-are maintained at population sizes far below the thresholds necessary to ensure demographic security. Most EW plant species depend on live propagation by a small number of botanic gardens, with a minority secured at seed bank institutions. Both extinctions and recoveries are possible fates for EW species. We urgently call for international effort to enable the latter

    What's on the horizon for community-based conservation? Emerging threats and opportunities

    Get PDF
    Community-based conservation can support livelihoods and biodiversity, while reinforcing local and Indigenous values, cultures, and institutions. Its delivery can help address cross-cutting global challenges, such as climate change, conservation, poverty, and food security. Therefore, understanding trends in community-based conservation is pertinent to setting and implementing global goals. We undertook a horizon scan to prioritize 15 emerging threats and opportunities expected to impact the future effectiveness of community-based conservation. Topics relate to global biodiversity policy; human rights; shifting human geography; inclusion, diversity, equity, and access; conservation finance and income; and economic reforms. Our findings offer guidance on strengthening community-based conservation to achieve global environmental and development goals

    Achieving conservation outcomes in plant mitigation translocations: the need for global standards

    Get PDF
    Many countries have legislation intended to limit or offset the impact of anthropogenic disturbance and development on threatened plants. Translocations are often integral to those mitigation policies. When translocation is used exclusively to mitigate development impacts, it is often termed a ‘mitigation translocation.’ However, both the terminology and processes vary regarding interpretation and application, resulting in inconsistent standards, often leading to poorly planned and implemented projects. These mitigation projects rarely achieve the intended ‘no net loss’ of protected species due to issues with timelines and procedures that result in the mortality of translocated individuals. Instead, such projects are often process driven, focused on meeting legislative requirements which enable the development to proceed, rather than meaningful attempts to minimise the ecological impact of developments and demonstrate conservation outcomes. Here, we propose to reframe mitigation translocations as conservation driven, ensuring best practice implementation and hence, a quantified no net loss for impacted species. These methods include redefining the term mitigation translocation to include conservation objectives and outlining issues associated with the mitigation translocation processes worldwide. We also nominate global standards of practice to which all proposals should adhere, to ensure each project follows a trajectory towards quantified success, with genuine impact mitigation. These proposed standards focus on building efficient translocation plans and improving governance to facilitate a transition from project centred to ecology-driven translocation. Employment of these standards is relevant to development proponents, government regulators, researchers, and translocation practitioners and will increase the likelihood of conservation gains within the mitigation translocation sector

    Genetics of a reintroduced swift fox population highlights the need for integrated conservation between neighbouring countries

    No full text
    The genetic consequences of reintroductions are rarely considered after releases cease, but long-term viability depends on linked demography and genetic health. Reintroductions of swift foxes Vulpes velox began after 45 years of extirpation from Canada; these have resulted in national down-listing to ‘threatened’ status, and the re-establishment of a small contiguous population in Montana, US. Demographic growth has been associated with stable levels of genetic diversity and growing effective population size, but evidence of two genetic clusters, and a recent decline in abundance could be cause for conservation concern depending on underlying mechanisms. We analysed individuals from two time points at 18 microsatellite loci to investigate whether the genetic structure is a consequence of having used two separate release sites and non-equilibrium population dynamics, but our results suggest that the population is likely at mutation- and migration-drift equilibrium. We examined habitat effects on relative gene flow and found limited evidence for cropland to be a dispersal barrier, but effects of terrain roughness suggest that more rugged landscapes may reduce dispersal capacity. Using parentage analysis we determined maximum dispersal distances of up to 50 km for females and 100 km for males including movements in either direction across the international border, but no mixing of genetic clusters was seen in either country. Greater genetic connectivity among than within respective countries necessitates careful co-management between Canada, where the species has the highest levels of legislative protection, and contiguous areas of the United States where limited trapping for fur is now permitted. We encourage similar analyses of conservation populations across international borders to determine how optimal genetic management can best mesh with different policies and conservation approaches among countries

    Asynchronous breeding and variable embryonic development period in the threatened Northern Leopard Frog (Lithobates pipiens) in the Cypress Hills, Alberta, Canada: conservation and management implications

    Get PDF
    Understanding breeding phenology is critical for establishing monitoring strategies, comprehending population dynamics, and developing conservation actions for at-risk species, such as the Northern Leopard Frog (Lithobates pipiens). The timing of spawning and hatching in the Northern Leopard Frog may be highly variable depending on regional environmental conditions, which can make establishing the timing of surveys difficult. In spring 2006, eggs were laid over 30 days (24 April to 23 May) and hatching occurred over 2 weeks (14–28 May) at three neighbouring ponds in Cypress Hills, Alberta, Canada. Although spawning occurred over a month, all eggs hatched within a 2-week period, indicating variable embryo development rate. Among 26 egg masses, eggs laid later in the season developed approximately four times faster than those laid earlier, and Akaike information criterion-ranked models suggested that both Julian date and water temperature were important predictors of embryo development rate: later spawning date and warmer water were associated with faster rates. Some egg masses survived colder temperatures than previously reported for this species. Asynchronous breeding and variable development rates reveal the need to conduct multiple surveys over the breeding season, even within a small geographic area, to document reliably the presence of egg masses and identify breeding habitat. Identification of key breeding habitat is necessary to mitigate human-caused disturbances of such regionally imperiled species

    Temporal Analysis of Genetic Structure to Assess Population Dynamics of Reintroduced Swift Foxes

    No full text
    Reintroductions are increasingly used to reestablish species, but a paucity of long-term postrelease monitoring has limited understanding of whether and when viable populations subsequently persist. We conducted temporal genetic analyses of reintroduced populations of swift foxes (Vulpes velox) in Canada (Alberta and Saskatchewan) and the United States (Montana). We used samples collected 4 years apart, 17 years from the initiation of the reintroduction, and 3 years after the conclusion of releases. To assess program success, we genotyped 304 hair samples, subsampled from the known range in 2000 and 2001, and 2005 and 2006, at 7 microsatellite loci. We compared diversity, effective population size, and genetic connectivity over time in each population. Diversity remained stable over time and there was evidence of increasing effective population size. We determined population structure in both periods after correcting for differences in sample sizes. The geographic distribution of these populations roughly corresponded with the original release locations, which suggests the release sites had residual effects on the population structure. However, given that both reintroduction sites had similar source populations, habitat fragmentation, due to cropland, may be associated with the population structure we found. Although our results indicate growing, stable populations, future connectivity analyses are warranted to ensure both populations are not subject to negative small-population effects. Our results demonstrate the importance of multiple sampling years to fully capture population dynamics of reintroduced populations
    • 

    corecore