163 research outputs found

    A Nonparametric Adaptive Nonlinear Statistical Filter

    Full text link
    We use statistical learning methods to construct an adaptive state estimator for nonlinear stochastic systems. Optimal state estimation, in the form of a Kalman filter, requires knowledge of the system's process and measurement uncertainty. We propose that these uncertainties can be estimated from (conditioned on) past observed data, and without making any assumptions of the system's prior distribution. The system's prior distribution at each time step is constructed from an ensemble of least-squares estimates on sub-sampled sets of the data via jackknife sampling. As new data is acquired, the state estimates, process uncertainty, and measurement uncertainty are updated accordingly, as described in this manuscript.Comment: Accepted at the 2014 IEEE Conference on Decision and Contro

    Low-dimensional models for turbulent plane Couette flow in a minimal flow unit

    Get PDF
    We model turbulent plane Couette flow in the minimal flow unit (MFU) – a domain whose spanwise and streamwise extent is just sufficient to maintain turbulence – by expanding the velocity field as a sum of optimal modes calculated via proper orthogonal decomposition from numerical data. Ordinary differential equations are obtained by Galerkin projection of the Navier–Stokes equations onto these modes. We first consider a 6-mode (11-dimensional) model and study the effects of including losses to neglected modes. Ignoring these, the model reproduces turbulent statistics acceptably, but fails to reproduce dynamics; including them, we find a stable periodic orbit that captures the regeneration cycle dynamics and agrees well with direct numerical simulations. However, restriction to as few as six modes artificially constrains the relative magnitudes of streamwise vortices and streaks and so cannot reproduce stability of the laminar state or properly account for bifurcations to turbulence as Reynolds number increases. To address this issue, we develop a second class of models based on ‘uncoupled’ eigenfunctions that allow independence among streamwise and cross-stream velocity components. A 9-mode (31-dimensional) model produces bifurcation diagrams for steady and periodic states in qualitative agreement with numerical Navier–Stokes solutions, while preserving the regeneration cycle dynamics. Together, the models provide empirical evidence that the ‘backbone’ for MFU turbulence is a periodic orbit, and support the roll–streak–breakdown–roll reformation picture of shear-driven turbulence

    Effect of Noise on Excursions To and Back From Infinity

    Full text link
    The effect of additive white noise on a model for bursting behavior in large aspect-ratio binary fluid convection is considered. Such bursts are present in systems with nearly square symmetry and are the result of heteroclinic cycles involving infinite amplitude states created when the square symmetry is broken. A combination of numerical results and analytical arguments show how even a very small amount of noise can have a very large effect on the amplitudes of successive bursts. Large enough noise can also affect the physical manifestations of the bursts. Finally, it is shown that related bursts may occur when white noise is added to the normal form equations for the Hopf bifurcation with exact square symmetry.Comment: 17 pages, 9 figure

    <Contributed Talk 15>An Energy Harvester for Broadband Vibrations

    Get PDF
    [Date] November 28 (Mon) - December 2 (Fri), 2011: [Place] Kyoto University Clock Tower Centennial Hall, Kyoto, JAPA

    Turbulence transition and the edge of chaos in pipe flow

    Full text link
    The linear stability of pipe flow implies that only perturbations of sufficient strength will trigger the transition to turbulence. In order to determine this threshold in perturbation amplitude we study the \emph{edge of chaos} which separates perturbations that decay towards the laminar profile and perturbations that trigger turbulence. Using the lifetime as an indicator and methods developed in (Skufca et al, Phys. Rev. Lett. {\bf 96}, 174101 (2006)) we show that superimposed on an overall 1/1/\Re-scaling predicted and studied previously there are small, non-monotonic variations reflecting folds in the edge of chaos. By tracing the motion in the edge we find that it is formed by the stable manifold of a unique flow field that is dominated by a pair of downstream vortices, asymmetrically placed towards the wall. The flow field that generates the edge of chaos shows intrinsic chaotic dynamics.Comment: 4 pages, 5 figure
    corecore