171 research outputs found

    Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Plants 1 (2015): 15087, doi:10.1038/nplants.2015.87.The molecular motors kinesin and dynein drive bidirectional motility along microtubules (MTs) in most eukaryotic cells1,2. Land plants, however, are a notable exception, since they contain a large number of kinesins but lack cytoplasmic dynein, the foremost processive retrograde transporter3,4. It remains unclear how plants achieve retrograde cargo transport without dynein. Here, we have analyzed the motility of the six members of minus-end-directed kinesin-14 motors in the moss Physcomitrella patens and found that none are processive as native dimers. However, when artificially clustered into as little as dimer of dimers, the type-VI kinesin-14 (a homologue of Arabidopsis KCBP [kinesin-like calmodulin binding protein]) exhibited highly processive and fast motility (up to 0.6 μm/s). Multiple kin14-VI dimers attached to liposomes also induced transport of this membrane cargo over several microns. Consistent with these results, in vivo observations of GFP-tagged kin14-VI in moss cells revealed fluorescent punctae that moved processively towards the minus ends of the cytoplasmic MTs. These data suggest that clustering of a kinesin-14 motor serves as a dynein-independent mechanism for retrograde transport in plants.This work was supported by the Human Frontier Science Program, the James A. and Faith Miller Memorial Fund (MBL), the Laura and Arthur Colwin Endowed Summer Research Fellowship Fund (MBL), the TORAY Science Foundation, Grants-in-Aid for Scientific Research (15K14540, MEXT) (G.G), and the NIH (38499; R.D.V).2015-12-2

    A smartphone localization algorithm using RSSI and inertial sensor measurement fusion

    Get PDF
    Indoor navigation using the existing wireless infrastructure and mobile devices is a very active research area. The major challenge is to leverage the extensive smartphone sensor suite to achieve location tracking with high accuracy. In this paper, we develop a navigation algorithm which fuses the WiFi received signal strength indicator (RSSI) and smartphone inertial sensor measurements. A sequential Monte Carlo filter is developed for inertial sensor based tracking, and a radiolocation algorithm is developed to infer mobile location based on RSSI measurements. The simulation results show that the proposed algorithm significantly outperforms the extended Kalman filter (EKF), and achieves competitive location accuracy compared with the round trip time (RTT) based ultra-wideband (UWB) system.National Science Foundation (U.S.) (Grant ECCS-0901034)United States. Office of Naval Research (Grant N00014-11-1-0397)Defense University Research Instrumentation Program (U.S.) (Grant N00014-08-1-0826)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologie

    Integrated IMU and radiolocation-based navigation using a Rao-Blackwellized particle filter

    Get PDF
    In this paper, we develop a cooperative IMU/radio-location-based navigation system, where each node tracks the location not only based on its own measurements, but also via collaboration with neighbor nodes. The key problem is to design a nonlinear filter to fuse IMU and radiolocation information. We apply the Rao-Blackwellization method by using a particle filter and parallel Kalman filters for the estimation of orientation and other states (i.e., position, velocity, etc.), respectively. The proposed method significantly outperforms the extended Kalman filter (EKF) in the set of simulations here.National Science Foundation (U.S.) (Grant ECCS-0901034)United States. Office of Naval Research (Grant N00014-11-1-0397)Defense University Research Instrumentation Program (U.S.) (Grant N00014-08-1-0826)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologie

    Surgical Decision Making for Unstable Thoracolumbar Spine Injuries: Results of a Consensus Panel Review by the Spine Trauma Study Group

    Get PDF
    Objectives: The optimal surgical approach and treatment of unstable thoracolumbar spine injuries are poorly defined owing to a lack of widely accepted level I clinical literature. This lack of evidence based standards has led to varied practice patterns based on individual surgeon preferences. The purpose of this study was to survey the leaders in the field of spine trauma to define the major characteristics of thoracolumbar injuries that influence their surgical decision making. In the absence of good scientific data, expert consensus opinions may provide surgeons with a practical framework to guide therapy and to conduct future research. Methods: A panel of 22 leading spinal surgeons from 20 level I trauma centers in seven countries met to discuss the indications for surgical approach selection in unstable thoracolumbar injuries. Injuries were presented to the surgeons in a case scenario survey format. Preferred surgical approaches to the clinical scenarios were tabulated and comments weighed. Results: All members of the panel agreed that three independent characteristics of thoracolumbar injuries carry primary importance in surgical decision making: the injury morphology, the neurologic status of the patient, and the integrity of the posterior ligaments. Six clinical scenarios based on the neurologic status of the patient (intact, incomplete, or complete) and on the status of the posterior ligamentous complex (intact or disrupted) were created, and consensus treatment approaches were described. Additional circumstances capable of altering the treatments were acknowledged. Conclusions: Decision making for the surgical treatment of thoracolumbar injuries is largely dependent on three patient characteristics: injury morphology, neurologic status, and posterior ligament integrity. A logical and practical decision-making process based on these characteristics may guide treatment even for the most complicated fracture patterns
    • …
    corecore