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Abstract—Indoor navigation using the existing wireless in-
frastructure and mobile devices is a very active research area.
The major challenge is to leverage the extensive smartphone
sensor suite to achieve location tracking with high accuracy. In
this paper, we develop a navigation algorithm which fuses the
WiFi received signal strength indicator (RSSI) and smartphone
inertial sensor measurements. A sequential Monte Carlo filter is
developed for inertial sensor based tracking, and a radiolocation
algorithm is developed to infer mobile location based on RSSI
measurements. The simulation results show that the proposed
algorithm significantly outperforms the extended Kalman filter
(EKF), and achieves competitive location accuracy compared
with the round trip time (RTT) based ultra-wideband (UWB)
system.
Index Terms—Indoor navigation, smartphone localization, in-

ertial measurement unit (IMU), particle filter, information fusion.

I. INTRODUCTION
Future wireless applications face an increasing demand

for location information to enable numerous commercial and
public services [1]–[3]. However, navigation in indoor envi-
ronment is very challenging due to the attenuation of global
positioning system (GPS) signals. In recent years, emerging
wireless technologies [4]–[6] and advanced filtering techniques
[7]–[9] have played a pivotal role in the design of accurate
indoor navigation systems.
Smartphones have been incorporating ever more powerful

computing capability and sensor functions. The recent smart-
phones are equipped with an inertial measurement unit (IMU)
including accelerometer and gyroscope. These inertial sensors
measure the force and angular velocity, which can be exploited
to assist navigation when the GPS signal is severely attenuated.
However, IMU-based navigation is sensitive to initialization
and is only accurate for a short period due to the cubic
error drift [10]. Hence, it is usually used with fusion of other
measurements, e.g., radiolocation using UWB, Bluetooth, and
WiFi [11]–[14].
Radiolocation is a key component of indoor navigation

systems, which use the round trip time (RTT) or received
signal strength indicator (RSSI) to infer the location. UWB has
been considered in RTT-based radiolocation for high accuracy
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due to its fine signal resolution [5], [15]. However, the high
cost of adding UWB to current wireless devices hinders a
wide commercial deployment. Hence, it is more desirable to
design an indoor navigation system which exploits the existing
communication infrastructure and devices. As one of the most
common wireless technologies, WiFi is widely available in
indoor areas such as offices and shopping malls. Moreover,
WiFi RSSI can be easily detected on a smartphone without
modifying the physical layer, and hence, greatly facilitates
indoor localization and navigation [16]–[18].
In this paper, we develop a location tracking algorithm

which fuses the WiFi RSSI and smartphone inertial sensor
measurements to track the mobile node position. The major
contributions are summarized as follows:

• We design a Sequential Monte Carlo Kalman filter (SMC-
KF)1 for the IMU-based navigation, which uses a particle
filter for nonlinear orientation estimation with a bank of
Kalman filters for estimating the remaining states (e.g.,
position, velocity). The proposed method significantly
outperforms the EKF in navigation accuracy.

• We develop a steepest descent random start (SDRS)
algorithm for the WiFi RSSI-based radiolocation. The
proposed scheme using WiFi RSSI achieves performance
close to that of the RTT-based scheme, but with much
easier implementation on smartphones.

• We integrate the WiFi RSSI and smartphone inertial
sensor measurements in a navigation filter. The simulation
results shows that the information fusion provides signif-
icant improvements compared with RSSI-only or IMU-
only navigation.

II. SYSTEM MODEL OF SMARTPHONE IMU

In this section, we describe the process model and mea-
surement model of the inertial sensors (i.e., accelerometer and
gyroscope) on a smartphone.
We define the orientation of a smartphone as ϕ(n) =

[ϕx(n), ϕy(n), ϕz(n)]T, representing the three simultaneous
orthogonal rotation angles. The state x(n) contains position,
velocity, acceleration, and the derivative of orientation, given

1The development of the SMC-KF can be viewed as a Rao-Blackwellized
particle filter [19], but the SMC-KF uses the quasi-optimal importance density
instead of the suboptimal one-step prediction simulation density used in [14].
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by

x(n) = [x(n), y(n), z(n), ẋ(n), ẏ(n), ż(n),

ẍ(n), ÿ(n), z̈(n), ϕ̇x(n), ϕ̇y(n), ϕ̇z(n) ]
T.

Both ϕ(n) and x(n) are represented with respect to the
reference frame.
The process model can be written as

x(n+ 1) = Fx(n) +Gw(n) (1)

ϕ(n+ 1) = ϕ(n) + T ϕ̇(n) +
T 2

2
wϕ(n) (2)

where

F =





I3 T I3 T 2/2I3 03

03 I3 T I3 03

03 03 I3 03

03 03 03 I3



 , G =





T 3/6I3 03

T 2/2I3 03

T I3 03

03 T I3





with the sample time T , and Ik and 0k denoting the k×k unit
matrix and zero matrix, respectively. The noise vector w(n) =
[wx(n), wy(n), wz(n), wϕx

(n)wϕy
(n), wϕz

(n)]T, of which
the first three elements model the jerk noise as an i.i.d.
Gaussian sequence, i.e., [wx(n), wy(n), wz(n)]T ∼ N (0,Q),
and the last three elements model the orientation derivative
process noise as wϕ(n) ∼ N (0,Qϕ). The covariance ma-
trices Q = diag(σ2

x,σ
2
y ,σ

2
z) and Qϕ = diag(σ2

ϕx
,σ2

ϕy
,σ2

ϕz
)

with standard deviations in m/s3 and rad/s2, respectively.
The smartphone inertial sensor measurements include the

angular velocity ω and the force normalized by the constant
mass of the IMU f , both with respect to the body frame. The
IMU measurement model is given by

zIMU(n) =

[
ω(n)
f(n)

]
= H

(
ϕ(n)

)
(x(n)−xg) + vIMU(n) (3)

where xg = [01×8, g, 01×3]T is the gravity acceleration, and

H
(
ϕ(n)

)
=

[
03 03 03 C1(ϕ(n))
03 03 C2(ϕ(n)) 03

]

with matricesC1(ϕ(n)) ∈ R3×3 andC2(ϕ(n)) ∈ R3×3 given
by [9], [20]

C1(ϕ(n)) = I3 − ‖ϕ(n)‖−2
(
1− cos ‖ϕ(n)‖

)
[ϕ(n)]×

+ ‖ϕ(n)‖−3
(
1− sin ‖ϕ(n)‖/‖ϕ(n)‖

)
[ϕ(n)]2×

C2(ϕ(n)) = I3 − ‖ϕ(n)‖−1sin ‖ϕ(n)‖[ϕ(n)]×

+ ‖ϕ(n)‖−2
(
1− cos ‖ϕ(n)‖

)
[ϕ(n)]2×

and [ϕ(n)]× denoting the skew-symmetric form of the vector
ϕ(n), i.e.,

[ϕ(n)]× =




0 −ϕz ϕy

ϕz 0 −ϕx

−ϕy ϕx 0



 .

The additive IMU noise vIMU(n) = [vω(n), vf (n) ]T is
an i.i.d. Gaussian sequence with vω(n) ∼ N (0,σ2

ωI3) and
vf (n) ∼ N (0,σ2

f I3). The covariance matrix of vIMU(n) is
denoted as RIMU.

III. SEQUENTIAL MONTE CARLO KALMAN FILTER
FOR IMU-BASED NAVIGATION

In this section, we design a nonlinear filter for the smart-
phone navigation problem using inertial sensors measure-
ments. Since the measurement model (3) is a nonlinear
function of orientation, we apply the sequential importance
sampling method to the orientation estimation, while adopting
measurement linearization for construction of a practical sim-
ulation density. Such method is referred to as SMC-KF [21],
[22].
In the SMC-KF, the estimated states are determined by

ϕ̂(n) =
Ns∑

i=1

wi(n)ϕi(n), x̂(n|n) =
Ns∑

i=1

wi(n)x̂i(n|n) (4)

where wi(n) is the weight of the ith particle ϕi(n), Ns is
the number of particles, and x̂(n|n) = E{x(n)|zn} is the
estimated state vector given cumulative measurements zn =
{z(l), l = 0, · · · , n}.2

A. Particle Filter for Estimating ϕi(n)

Consider a particle filter with Ns particle streams, i.e.,

ϕi,n ! {ϕi(l), l = 0, · · · , n}, i = 1, · · · , Ns.

The particles ϕi(n) are generated as random samples from
the importance sampling density q(ϕi(n)|ϕi,n−1, zn). The
optimal importance density is given by [22]

q(ϕi(n)|ϕi,n−1, zn)

= p(ϕi(n)|ϕi,n−1, zn)

=
p(z(n)|ϕi,n, zn−1)p(ϕi(n)|ϕi,n−1, zn−1)

p(z(n)|ϕi,n−1, zn−1)

=
1

ci
N
(
z(n);H

(
ϕi(n)

)(
x̂i(n|n− 1)− xg

)
,

H
(
ϕi(n)

)
Pi(n|n− 1)H

(
ϕi(n)

)T
+R

)

·N
(
ϕi(n−1)+T ˆ̇ϕi(n|n−1), T 2Pi

ϕ̇(n|n−1)+T 4/4Qϕ

)
(5)

where ci = p(z(n)|ϕi,n−1, zn−1) is a constant with respect
to ϕi(n), and x̂i(n|n − 1) = E{xi(n)|ϕi,n−1, zn−1}. The
nonlinearity of H

(
ϕi(n)

)
precludes combining the product

of Gaussian densities in (5) into a single Gaussian, hence
obtaining a tractable sampling distribution. To address the
problem, we adopt the SMC-KF [21] to approximate the
importance density. Specifically, we perform the following
linearization approximation in (5):

H
(
ϕi(n)

)(
x̂i(n|n− 1)−xg

)

≈ H
(
ϕ̃i(n)

)(
x̂i(n|n−1)−xg

)
+Ji(n)

(
ϕi(n)−ϕ̃i(n)

)
(6)

H
(
ϕi(n)

)
Pi(n|n− 1)H

(
ϕi(n)

)T
+R

≈ H
(
ϕ̃i(n)

)
Pi(n|n− 1)H

(
ϕ̃i(n)

)T
+R

! Σi(n|n− 1) (7)

2For notation simplicity, we omit the subscript “IMU” in this section.



where ϕ̃i(n) = ϕi(n−1)+T ˆ̇ϕi(n|n−1), and Ji(n) ∈ R6×3

is the Jacobian matrix given by

Ji(n) =
∂H(ϕ(n))

(
x̂i(n|n− 1)− xg

)

∂ϕ(n)

∣∣∣
ϕ(n)=ϕ̃i(n)

.

Note that the linearization of H
(
ϕi(n)

)
and Ji(n) are evalu-

ated at ϕ̃i(n) = ϕi(n − 1) + T ˆ̇ϕi(n|n − 1), since ϕ̃i(n) is
more accurate than ϕi(n− 1) and thus can help to reduce the
linearization error. Substitution of (6) and (7) into (5) yields
the following proposition.
Proposition 1: The density p(ϕi(n)|ϕi,n−1, zn) can be ap-

proximated as a single Gaussian distribution using the lin-
earization in (6) and (7):

p(ϕi(n)|ϕi,n−1, zn) = N (ϕi(n);ϕi(n),Pi
ϕ(n)) (8)

where

ϕi(n) = ϕ̃i(n) +Pi
ϕ(n)J

i(n)TΣi(n|n− 1)−1

·
(
z(n)−H

(
ϕ̃i(n)

)(
x̂i(n|n− 1)− xg

))

Pi
ϕ(n)

−1 = Ji(n)TΣi(n|n− 1)−1Ji(n)

+
(
T 2Pi

ϕ̇(n|n− 1) + T 4/4Qϕ

)−1.

Proof: The derivations follows the standard EKF deriva-
tion [22], [23]. Due to the limited space, we omit the details
here.
The recursive weight update is given by

wi(n) !
p(ϕi,n|zn)

q(ϕi,n|zn)
=

p(z(n)|ϕi,n−1, zn−1)

p(z(n)|zn−1)
· wi(n− 1).

Since p
(
z(n)|zn−1

)
is a constant and can be omitted after

the normalization, we only need to determine the density
p(z(n)|ϕi,n−1, zn−1). It can be written as

p(z(n)|ϕi,n−1, zn−1)

=

∫
p(z(n)|ϕi,n, zn−1)p(ϕi(n)|ϕi,n−1, zn−1)dϕi(n).

The densities in the above equation have been derived in (5).
Using the linearization in (6) and (7), we have

p(z(n)|ϕi,n−1, zn−1)

= N
(
z(n);H

(
ϕ̃i(n)

)(
x̂i(n|n− 1)− xg

)
,Σi(n|n− 1)

+ Ji(n)
(
T 2Pi

ϕ̇(n|n− 1) + T 4/4Qϕ

)
Ji(n)T

)
.

Hence, the weight update is given by

wi(n) =
1

c
p(z(n)|ϕi,n−1, zn−1) · wi(n− 1) (9)

where c is a normalization constant.

B. Kalman Filter for Estimating Non-Orientation States
The non-orientation state processes including position, ve-

locity, acceleration, and angle derivative along with their
measurements can be modeled as linear Gaussian, once the
orientation is specified. Hence, the Kalman filter is optimal for
estimating x(n) given the particle stream ϕi,n. Specifically,

Algorithm 1 SMC-KF Algorithm for IMU-based Navigation
Given: ϕi(n − 1), x̂i(n|n − 1), Pi(n|n − 1) and the IMU

measurement zIMU(n)
1: for i = 1, · · · , Ns do $ SMC Filter
2: Generate particle ϕi(n)∼p(ϕi(n)|ϕi,n−1, zn) via (8)
3: Update weight wi(n) via (9)
4: end for
5: Normalize weights w̃i(n) = wi(n)/

∑Ns
i=1 w

i(n), ∀i
6: Calculate effective sample size N̂eff = 1/

∑Ns
i=1(w̃

i(n))2

7: if N̂eff ≤ NT then
8: Systematical resampling (cf. [7]) of ϕi(n), and set

wi(n) = 1/Ns
9: end if
10: for i = 1, · · · , Ns do $ Kalman Filter
11: Update x̂i(n|n) and Pi(n|n) via (10)–(12)
12: Predict x̂i(n+ 1|n) and Pi(n+ 1|n) via (13)–(14)
13: end for
14: Calculate the estimated states ϕ̂(n) and x̂(n|n) via (4).

we use Ns parallel Kalman filters to estimate x̂i(n), i =
1, · · · , Ns.
The Kalman filter gain is given by

Ki(n) = Pi(n|n− 1)HT(ϕi(n))

·
(
H(ϕi(n))Pi(n|n− 1)HT(ϕi(n)) +R

)−1. (10)

The correction steps are given by

x̂i(n|n) = x̂i(n|n− 1) +Ki(n)

·
(
z(n)−H(ϕi(n))

(
x̂i(n|n−1)−xg

))
(11)

Pi(n|n) =
(
I−Ki(n)H(ϕi(n))

)
Pi(n|n− 1). (12)

The prediction steps are given by

x̂i(n+ 1|n) = Fx̂i(n|n) (13)
Pi(n+ 1|n) = FPi(n|n)FT +GQGT. (14)

The overall SMC-KF algorithm for IMU-based navigation
is described in Algorithm 1.

IV. RADIOLOCATION USING WIFI RSSI
In addition to the inertial sensor measurements, WiFi signals

can be exploited in smartphone navigation due to the ever
increasing density of WiFi networks.. In this section, we
develop a radiolocation algorithm that infers the smartphone
location based on WiFi RSSI measurements.

A. Steepest Descent Random Start (SDRS) Positioning Algo-
rithm
We consider a scenario in which a single static smartphone

computes its position using the RSSI from adjacent wireless
access points (AP). The smartphone obtains RSSI measure-
ment in dBm zRSSI,j from access point (AP) j, given by [24]

zRSSI,j(n) = saj − 10ηj log10
||p(n)− paj ||

d0
+ vj(n), ∀j ∈ Na



where saj is the AP transmit power in dBm, ηj is the path loss
exponent, p(n) and paj are the positions of the smartphone
and the APs, respectively, d0 is the reference distance, vj(n)
is the measurement noise, and Na is the set of adjacent APs.
For Gaussian noise vj(n), the maximum-likelihood position
estimate corresponds to the minimum of the objective function

f(p(n)) =
∑

j∈Na

(
zRSSI,j(n)−saj+10ηj log10

||p(n)− paj ||

d0

)2
.

The SDRS algorithm uses multiple initial starting points
pq,0, q = 1, · · · , Nstart uniformly distributed in the scenario
region. The Nstart points are processed in parallel with lq iter-
ations at which convergence is declared. The SDRS estimate
corresponds to p̂ = pq∗,lq∗ , where q∗ = argminq f(pq,lq ).
The SDRS algorithm can be interpreted as a lightweight par-
ticle filter, in which the random start positions pq,0 correspond
to an initial choice of particles, and with a single particle p̂

surviving at the end of the algorithm. The description of the
SDRS algorithm can be referred to [25].

B. Path Loss Exponent Decision
The accuracy of SDRS algorithm relies on the path loss

exponent ηj . Since the path loss exponent changes fairly
slowly for the pedestrian applications here, e.g., LOS or
NLOS, we consider two hypotheses of the path loss expo-
nent as {LOS : ηj = 2} and {NLOS : ηj = 4}.3
Then we apply a binary decision rule using multiple RSSI
measurements to determine the path loss exponent. We let
zRSSI,j(n) = {zRSSI,j(l), l ∈ NRSSI(n)} denote the NRSSI
adjacent independent RSSI measurements, i.e., NRSSI(n) =
{n−NRSSI+1, n−NRSSI+2, · · · , n}. Given vj ∼ N (0,σ2),
the likelihood ratio can be derived as
f(zRSSI,j(n)|NLOS)
f(zRSSI,j(n)|LOS)

=exp

(
−

1

σ2

∑

n∈NRSSI

20 log10
||p̂(n|n)−paj||

d0

·
(
zj(n)−saj+30 log10

||p̂(n|n)−paj||

d0

))
.

The decision rule is given by
f(zRSSI,j(n)|NLOS)
f(zRSSI,j(n)|LOS)

NLOS
≷
LOS

λ

where λ is a threshold. It follows that

g(zRSSI,j(n))
LOS
≷

NLOS
γth = −σ2 lnλ (15)

where

g(zRSSI,j(n)) =
∑

n∈NRSSI

20 log10
||p̂(n|n)− paj ||

d0

·
(
zj(n)− saj + 30 log10

||p̂(n|n)− paj ||

d0

)
.

The threshold λ is given by

λ =
pLOS(CNLOS|LOS − CLOS|LOS)

pNLOS(CLOS|NLOS − CNLOS|NLOS)

3A more complicated algorithm considering continuous ηj is given in [18].
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Fig. 1: Smartphone navigation system with information fusion
of WiFi RSSI and inertial sensor measurements.

where CH|K is the cost of detecting H when K is true. Assume
equal prior probability pLOS = pNLOS = 1/2, and the cost
CLOS|LOS = CNLOS|NLOS = 0, CLOS|NLOS = CNLOS|LOS, we
have λ = 1.

C. Kalman Filter for SDRS Position Estimate
To track the smartphone location, the SDRS estimates are

further treated as linear Gaussian measurements by a Kalman
filter. Specifically, we consider the process model (1). The
measurement model is written as

zRL(n) = HRL(n)x(n) + vRL(n), n modNSDRS = 0

whereHRL = [I3 03 03 03], and the SDRS position estimation
error is taken to be Gaussian, i.e., vRL ∼ N (0,σ2

RLI3). The
covariance matrix of vRL(n) is denoted as RRL. The details
of the Kalman filter is similar to Sec. III-B.

V. INFORMATION FUSION IN SMARTPHONE NAVIGATION
In this section, we propose a smartphone navigation system

which fuses the WiFi RSSI and inertial sensor measurements.
The system diagram is shown in Fig. 1. The specific blocks
perform the following tasks:

• WiFi RSSI Estimation: it includes a WiFi module that
obtains RSSI measurements zRSSI,j(n) from the in-range
APs j ∈ Na.

• Path Loss Exponent Estimation: it performs a binary
decision (Sec. IV-B) on path loss exponent ηj based
on multiple RSSI measurements {zRSSI,j(n)}. Moreover,
the binary decision of ηj also requires the estimated
position. Since ηj varies slowly during normal walking,
the binary decision is not very sensitive to the position
estimation error. Hence, we directly use the estimated
position p̂(n|n) obtained from the navigation filter.

• Radiolocation (SDRS): runs the SDRS algorithm (Sec.
IV-A) to infer the smartphone position based on RSSI
measurements zRSSI,j(n), j ∈ Na.
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Fig. 2: The urban corridor with a single mobile node trajectory.

• Inertial Sensors: contain 3-D accelerometer and 3-D
gyroscope, which measure the acceleration and angular
velocity with respect to the body frame. The IMU model
is described in Sec. II.

• Navigation Filter: fuses the SMC-KF (Sec. III) for in-
ertial sensor measurements and the Kalman filter (Sec.
III-B) for radiolocation. We assume that SDRS algorithm
position estimates are computed after every NSDRS IMU
measurements. The SDRS estimates are treated as lin-
ear Gaussian measurements by a Kalman filter when n
mod NSDRS = 0. The IMU measurements are treated as
nonlinear Gaussian measurements by the SMC-KF when
n mod NSDRS )= 0.

VI. SIMULATION RESULTS
In this section, we simulate the WiFi RSSI and IMU based

smartphone navigation algorithm in a 2-D urban corridor
scenario.
The urban corridor is illustrated in Fig. 2, where the street

is 15 m wide with buildings 15 m wide on the north and
south sides. Fourteen WiFi APs (red rings) are placed in two
rows along the corridor, separated by every 100 m. A single
mobile node (blue dots) moves according to the Gaussian
acceleration model in (1)-(2) at a nominal velocity of 1 m/s
heading east, and gradually moves into the buildings on two
sides. The mobile node is also rotating itself, with random
initial orientation ϕz in [−π,π]. The small bar on the blue dot
denotes the orientation of mobile node. RSSI measurements zj
are assumed to be LOS (σ = 4 dB) when the mobile node is in
the street, otherwise the measurements are modeled as NLOS
(σ = 10 dB) [24]. The simulation parameters are summarized
in Table I.
In Fig. 3, we first investigate the performance of information

fusion in the smartphone navigation. Specifically, we plot the
average position estimation errors along the time axis, and
compare the scheme using information fusion with the ones us-
ing RSSI measurements or inertial sensor measurements only.4
It shows that using IMU only fails to track the smartphone
position over the long term. The RSSI-only scheme is able
to track the movement but with fairly large position error,
i.e., 22.59 m on average. The fusion of both RSSI and IMU
measurements reduces the position error to 7.83 m on average,
which is 65% lower compared with the RSSI-only schemes.

4We adopt the Kalman filter in the RSSI-only scheme and the SMC-KF in
the IMU-only scheme.

Jerk noise standard deviation (STD): σ 1e-1 m/s3
Angular acceleration noise STD: σϕ 5e-1 rad/s2
IMU gyro (angular velocity) noise STD: σω 5.2e-4 rad/s
IMU accelerometer (force) noise STD: σf 2e-3 m/s2/

√
Hz

AP-to-mobile communication range 100 m
AP transmit power: saj 15 dBm
Reference distance: d0 1 m
SDRS position estimation error STD: σRL 1.5 m
Number of particles: Ns 8
Number of random starting points for SDRS 8
Number of IMU updates per SDRS update: NSDRS 100
Sample time: T 0.1 sec
Total simulation duration 600 sec
Number of simulation runs for error averaging 100

TABLE I: Urban corridor simulation parameters
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Fig. 3: Information fusion improves the navigation accuracy.

Hence, it confirms the importance of the information fusion
in location tracking.
In Fig. 4, we compare the performance of the SMC-KF

with the conventional EKF. Specifically, we plot the cumula-
tive density function (CDF) curve of the position and angle
estimation errors. It shows that the SMC-KF significantly
outperforms the EKF. The position error of SMC-KF is 13
m lower than that of EKF with 80% probability. On average,
the position error is reduced by 60%. Moreover, the angle
estimation using SMC-KF is improved by 0.13 rads with 80%
probability compared with that using EKF. On average, the
angle error is reduced by 83%. This is mainly because the
SMC-KF uses multiple particles to estimate the angles, which
results in lower estimation errors compared with a single EKF.
In Fig. 5, we compare the proposed system using WiFi

RSSI and the system using UWB radio round trip time (RTT)
measurements in [14]. Both systems exploit inertial sensors
for the orientation estimation. Hence, the angle estimation
errors are similar. Due to the fine resolution of UWB signals,
its RTT measurements provides much more precise location
accuracy. As shown in the figure, the position error using
RTT measurements is 4.4 m lower with 80% probability, and
the gap is up to 3.1 m with 50% probability. Despite the
higher error of RSSI versus UWB navigation, the former’s
low cost and wide availability makes the performance tradeoff
acceptable.
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Fig. 4: SMC-KF achieves higher location accuracy compared
with EKF in IMU-based navigation.

VII. CONCLUSION
In this paper, we proposed a location tracking algorithm

that fuses WiFi RSSI and smartphone IMU measurements.
The nonlinear IMU measurements are processed by a SMC-
KF, and then integrated with the radiolocation information
inferred from WiFi RSSI. An urban corridor simulation shows
that the fusion algorithm with SMC-KF reduces the position
error by 13 m with 80% probability compared with the
conventional EKF. Moreover, it shows that the information
fusion achieves 65% lower position error compared with the
navigation scheme without using smartphone inertial sensors.
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