573 research outputs found

    A Decision Support System to Predict Acute Fish Toxicity

    Get PDF
    We present a decision support system using a Bayesian network to predict acute fish toxicity from multiple lines of evidence. Fish embryo toxicity testing has been proposed as an alternative to using juvenile or adult fish in acute toxicity testing for hazard assessments of chemicals. The European Chemicals Agency has recommended the development of a so-called weight-of-evidence approach for strengthening the evidence from fish embryo toxicity testing. While weight-of-evidence approaches in the ecotoxicology and ecological risk assessment community in the past have been largely qualitative, we have developed a Bayesian network for using fish embryo toxicity data in a quantitative approach. The system enables users to efficiently predict the potential toxicity of a chemical substance based on multiple types of evidence including physical and chemical properties, quantitative structure-activity relationships, toxicity to algae and daphnids, and fish gill cytotoxicity. The system is demonstrated on three chemical substances of different levels of toxicity. It is considered as a promising step towards a probabilistic weight-of-evidence approach to predict acute fish toxicity from fish embryo toxicity.publishedVersio

    Skeletal levels of bisphosphonate in the setting of chronic kidney disease are independent of remodeling rate and lower with fractionated dosing

    Get PDF
    Background Chronic kidney disease (CKD) results in a dramatic increase in skeletal fracture risk. Bisphosphates (BP) are an effective treatment for reducing fracture risk but they are not recommended in advanced CKD. We have recently shown higher acute skeletal accumulation of fluorescently-tagged zoledronate (ZOL) in the setting of CKD but how this accumulation is retained/lost over time is unclear. Furthermore, it is unknown if alternative dosing approaches can modulate accumulation in the setting of CKD. Methods To address these two questions normal (NL) and Cy/+ (CKD) rats were divided into control groups (no dosing), a single dose of a fluorescent-tagged ZOL (FAM-ZOL), a single dose of non-labelled zoledronate (ZOL) or ten weekly doses of FAM-ZOL each at 1/10th the dose of the single dose group. Half of the CKD animals in each group were provided water with 3% calcium in drinking water (CKD + Ca) to suppress PTH and remodeling. At 30 or 35 weeks of age, serum, tibia, ulna, radius, vertebra, femora, and mandible were collected and subjected to assessment methods including biochemistry, dynamic histomorphometry and multi-spectral fluorescence levels (using IVIS SpectrumCT). Results FAM-ZOL did not significantly reduce bone remodeling in either NL or CKD animals while Ca supplementation in CKD produced remodeling levels comparable to NL. At five- and ten-weeks post-dosing, both CKD and CKD + Ca groups had higher levels of FAM-ZOL in most, but not all, skeletal sites compared to NL with no difference between the two CKD groups suggesting that the rate of remodeling did not affect skeletal retention of FAM-ZOL. Fractionating the FAM-ZOL into ten weekly doses led to 20–32% less (p < 0.05) accumulation/retention of compound in the vertebra, radius, and ulna compared to administration as a single dose. Conclusions The rate of bone turnover does not have significant effects on levels of FAM-ZOL accumulation/retention in animals with CKD. A lower dose/more frequent administration paradigm results in lower levels of accumulation/retention over time. These data provide information that could better inform the use of bisphosphonates in the setting of CKD in order to combat the dramatic increase in fracture risk

    Increased FGF23 protects against detrimental cardio-renal consequences during elevated blood phosphate in CKD

    Get PDF
    The phosphaturic hormone FGF23 is elevated in chronic kidney disease (CKD). The risk of premature death is substantially higher in the CKD patient population, with cardiovascular disease (CVD) as the leading mortality cause at all stages of CKD. Elevated FGF23 in CKD has been associated with increased odds for all-cause mortality; however, whether FGF23 is associated with positive adaptation in CKD is unknown. To test the role of FGF23 in CKD phenotypes, a late osteoblast/osteocyte conditional flox-Fgf23 mouse (Fgf23fl/fl/Dmp1-Cre+/-) was placed on an adenine-containing diet to induce CKD. Serum analysis showed casein-fed Cre+ mice had significantly higher serum phosphate and blood urea nitrogen (BUN) versus casein diet and Cre- genotype controls. Adenine significantly induced serum intact FGF23 in the Cre- mice over casein-fed mice, whereas Cre+ mice on adenine had 90% reduction in serum intact FGF23 and C-terminal FGF23 as well as bone Fgf23 mRNA. Parathyroid hormone was significantly elevated in mice fed adenine diet regardless of genotype, which significantly enhanced midshaft cortical porosity. Echocardiographs of the adenine-fed Cre+ hearts revealed profound aortic calcification and cardiac hypertrophy versus diet and genotype controls. Thus, these studies demonstrate that increased bone FGF23, although associated with poor outcomes in CKD, is necessary to protect against the cardio-renal consequences of elevated tissue phosphate

    Initiation of Dialysis Is Associated With Impaired Cardiovascular Functional Capacity

    Get PDF
    Background The transition to dialysis period carries a substantial increased cardiovascular risk in patients with chronic kidney disease. Despite this, alterations in cardiovascular functional capacity during this transition are largely unknown. The present study therefore sought to assess ventilatory exercise response measures in patients within 1 year of initiating dialysis. Methods and Results We conducted a cross‐sectional study of 241 patients with chronic kidney disease stage 5 from the CAPER (Cardiopulmonary Exercise Testing in Renal Failure) study and from the intradialytic low‐frequency electrical muscle stimulation pilot randomized controlled trial cohorts. Patients underwent cardiopulmonary exercise testing and echocardiography. Of the 241 patients (age, 48.9 [15.0] years; 154 [63.9%] men), 42 were predialytic (mean estimated glomerular filtration rate, 14 mL·min −1 ·1.73 m −2 ), 54 had a dialysis vintage ≤12 months, and 145 had a dialysis vintage &gt;12 months. Dialysis vintage ≤12 months exhibited a significantly impaired cardiovascular functional capacity, as assessed by oxygen uptake at peak exercise (18.7 [5.8] mL·min −1 ·kg −1 ) compared with predialysis (22.7 [5.2] mL·min −1 ·kg −1 ; P &lt;0.001). Dialysis vintage ≤12 months also exhibited reduced peak workload, impaired peak heart rate, reduced circulatory power, and increased left ventricular mass index ( P &lt;0.05 for all) compared with predialysis. After excluding those with prior kidney transplant, dialysis vintage &gt;12 months exhibited a lower oxygen uptake at peak exercise (17.0 [4.9] mL·min −1 ·kg −1 ) compared with dialysis vintage ≤12 months (18.9 [5.9] mL·min −1 ·kg −1 ; P =0.033). Conclusions Initiating dialysis is associated with a significant impairment in oxygen uptake at peak exercise and overall decrements in ventilatory and hemodynamic exercise responses that predispose patients to functional dependence. The magnitude of these changes is comparable to the differences between low‐risk New York Heart Association class I and higher‐risk New York Heart Association class II to IV heart failure

    Fall risk in an active elderly population – can it be assessed?

    Get PDF
    BACKGROUND: Falls amongst elderly people are often associated with fractures. Training of balance and physical performance can reduce fall risk; however, it remains a challenge to identify individuals at increased risk of falling to whom this training should be offered. It is believed that fall risk can be assessed by testing balance performance. In this study a test battery of physiological parameters related to balance and falls was designed to address fall risk in a community dwelling elderly population. RESULTS: Ninety-four elderly males and females between 70 and 80 years of age were included in a one year follow-up study. A fall incidence of 15% was reported. The test battery scores were not different between the fallers and non-fallers. Test scores were, however, related to self-reported health. In spite of inclusion of dynamic tests, the test battery had low fall prediction rates, with a sensitivity and specificity of 50% and 43% respectively. CONCLUSION: Individuals with poor balance were identified but falls were not predicted by this test battery. Physiological balance characteristics can apparently not be used in isolation as adequate indicators of fall risk in this population of community dwelling elderly. Falling is a complex phenomenon of multifactorial origin. The crucial factor in relation to fall risk is the redundancy of balance capacity against the balance demands of the individuals levels of fall-risky lifestyle and behavior. This calls for an approach to fall risk assessment in which the physiological performance is evaluated in relation to the activity profile of the individual
    • …
    corecore