37 research outputs found

    High Poisonous Cd Ions Removal by Ru-ZnO-g-C<sub>3</sub>N<sub>4</sub> Nanocomposite: Description and Adsorption Mechanism

    No full text
    Ru-ZnO-g-C3N4 nanocomposite was made using a straightforward ultrasonication method and evaluated for its potential to remove Cd ions from aqueous environments. X-ray diffraction analysis confirms composite production with an average crystalline size of 6.61 nm, while transmission electron microscopy results indicate nanosheet-like nanomaterials with uniform elements distribution. Measurements of N2 adsorption–desorption reveal the creation of a mesoporous structure with a BET surface area of approximately 257 m2/g. Fourier converted infrared reveals vibrational modes for O-H, amino groups, triazine, and Ru-ZnO. In contrast, X-ray photoelectron spectroscopy investigation reveals the presence of the elements Ru, Zn, O, N, and C. Ru-ZnO-g-C3N4 nanocomposite has remarkable adsorption efficiency for aqueous Cd ions, achieving 475.5 mg/g in 18 min. This study reveals that the Ru-ZnO-g-C3N4 nanocomposite may be used as an effective and reusable adsorbent for removing Cd ions during wastewater treatment and, possibly, for eliminating other toxic metal ions

    Dependency of Crystal Violet Dye Removal Behaviors onto Mesoporous V<sub>2</sub>O<sub>5</sub>-g-C<sub>3</sub>N<sub>4</sub> Constructed by Simplistic Ultrasonic Method

    No full text
    This research examined the production of a V2O5-g-C3N4 nanocomposite to remove organic dyes from wastewater. To generate the V2O5-g-C3N4 nanocomposite, the sonication method was applied. The testing of V2O5-g-C3N4 with various dyes (basic fuchsin (BF), malachite green (MG), crystal violet (CV), Congo red (CR), and methyl orange (MO)) revealed that the nanocomposite has a high adsorption ability towards BF, MG, CV, and CR dyes in comparison with MO dye. It was established that the modification of pH influenced the removal of CV by the V2O5-g-C3N4 nanocomposite and that under optimal operating conditions, efficiency of 664.65 mg g−1 could be attained. The best models for CV adsorption onto the V2O5-g-C3N4 nanocomposite were found to be those based on pseudo-second-order adsorption kinetics and the Langmuir isotherm. According to the FTIR analysis results, the CV adsorption mechanism was connected to π–π interactions and the hydrogen bond

    Fabrication of Mesoporous V<sub>2</sub>O<sub>5</sub>@g-C<sub>3</sub>N<sub>4</sub> Nanocomposite as Photocatalyst for Dye Degradation

    No full text
    This study investigated the photocatalytic degradation of RB dye by V2O5@g-C3N4 nano-catalysts. The sonication method was utilized to create V2O5@g-C3N4 nano-catalysts. V2O5@g-C3N4 nano-catalysts were characterized using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), high-resolution electron microscopy (TEM), BET-surface area analyzer, X-ray photoelectron spectroscopy (XPS), and ultraviolet spectroscopy. In the meantime, the photocatalytic activity, pH, and photocatalyst dosage are investigated in depth to account for RB dye decolorization. The rate constant for RB dye photodegradation was 0.0517 (min−1) and the decolorization rate was 93.4%. The degrading efficiency of RB dye by V2O5@g-C3N4 nanocatalysts is consistent with pseudo-first-order kinetics. The results of this study demonstrated that V2O5@g-C3N4 nanocatalysts are particularly effective at destroying dyes in water

    Ba2+ removal from aquatic medium via TiY2O5@g-C3N4 nanocomposites

    No full text
    International audienceThis research intends to produce TiY2O5@g-C3N4 nanocomposite that can be utilized to eliminate Ba+2 from aqueous solutions. The nanocomposite was studied with XRD, BET, EDX, and TEM investigation. The TiY2O5@g-C3N4 nanocomposite sorption effectiveness was studied by contact time, adsorbent dose, beginning pH, and initial barium ions concentration in batch kinetic and equilibrium tests. The barium ions adsorption was conducted using 10 mg of adsorbent, 60 mg. L−1 initial Ba+2 concentration at pH = 7 and equilibrium was reached in within 54.5 min. The Langmuir isotherm offered the highest correlation for Ba+2 adsorption to TiY2O5@g-C3N4 and demonstrated favorable adsorption; a maximum adsorption capacity of 295.52 mg. g−1 was achieved. The experimental data was utilized to study adsorption mechanisms and potential rate-controlling stages for mass transfer and kinetic models. External mass transfer and intra-particle diffusion influenced barium adsorption, and adsorption's kinetics followed a pseudo-second-order model with R2 = 0.9996, t1/2 = 38.8 min and h0 = 1.51 mg.g−1.min−1. The results indicate that Ba+2 are chemisorbed on TiY2O5@g-C3N4 nanocomposite. The results indicate that the nanocomposite has high aptitude and reusability for an effective metal ions adsorption

    Uptake of BF Dye from the Aqueous Phase by CaO-g-C<sub>3</sub>N<sub>4</sub> Nanosorbent: Construction, Descriptions, and Recyclability

    No full text
    Removing organic dyes from contaminated wastewater resulting from industrial effluents with a cost-effective approach addresses a major global challenge. The adsorption technique onto carbon-based materials and metal oxide is one of the most effective dye removal procedures. The current work aimed to evaluate the application of calcium oxide-doped carbon nitride nanostructures (CaO-g-C3N4) to eliminate basic fuchsine dyes (BF) from wastewater. CaO-g-C3N4 nanosorbent were obtained via ultrasonication and characterized by scanning electron microscopy, X-ray diffraction, TEM, and BET. The TEM analysis reveals 2D nanosheet-like nanoparticle architectures with a high specific surface area (37.31 m2/g) for the as-fabricated CaO-g-C3N4 nanosorbent. The adsorption results demonstrated that the variation of the dye concentration impacted the elimination of BF by CaO-C3N4 while no effect of pH on the removal of BF was observed. Freundlich isotherm and Pseudo-First-order adsorption kinetics models best fitted BF adsorption onto CaO-g-C3N4. The highest adsorption capacity of CaO-g-C3N4 for BF was determined to be 813 mg. g−1. The adsorption mechanism of BF is related to the π-π stacking bridging and hydrogen bond, as demonstrated by the FTIR study. CaO-g-C3N4 nanostructures may be easily recovered from solution and were effectively employed for BF elimination in at least four continuous cycles. The fabricated CaO-g-C3N4 adsorbent display excellent BF adsorption capacity and can be used as a potential sorbent in wastewater purification

    Mesoporous Zr-G-C3N4 Sorbent as an Exceptional Cu (II) Ion Adsorbent in Aquatic Solution: Equilibrium, Kinetics, and Mechanisms Study

    No full text
    International audienceA mesoporous Zr-G-C3N4 nanomaterial was synthesized by a succinct-step ultrasonication technique and used for Cu2+ ion uptake in the aqueous phase. The adsorption of Cu2+ was examined by varying the operating parameters, including the initial metal concentration, contact time, and pH value. Zr-G-C3N4 nanosorbent displays graphitic carbon nitride (g-C3N4) and ZrO2 peaks with a crystalline size of similar to 14 nm, as determined by XRD analysis. The Zr-G-C3N4 sorbent demonstrated a BET-specific surface area of 95.685 m(2)/g and a pore volume of 2.16 x 10(-7) m(3)center dot g(-1). Batch mode tests revealed that removing Cu (II) ions by the mesoporous Zr-G-C3N4 was pH-dependent, with maximal removal achieved at pH = 5. The adsorptive Cu2+ ion process by the mesoporous nanomaterial surface is well described by the Langmuir isotherm and pseudo-second-order kinetics model. The maximum adsorption capacity of the nanocomposite was determined to be 2.262 mol center dot kg(-1) for a contact time of 48 min. The results confirmed that the fabricated mesoporous Zr-G-C3N4 nanomaterial is effective and regenerable for removing Cu2+ and could be a potent adsorbent of heavy metals from aqueous systems

    Highly nanocrystalline Mg doped ZnFe2O4 powders for rapid and simultaneous adsorption of lead, copper, and cadmium heavy metals ions in synthetic/sea waters

    No full text
    This research aims to investigate the effect of Mg doping on individual and simultaneous adsorption of Pb+2, Cu+2, and Cd+2 heavy metals in aqueous solution and in seawater samples, by Zinc ferrite nanoparticles. The Mg-doped Zinc ferrite nanoparticles are synthesized successfully by the sol-gel route and varying Mg concentrations. TEM, XRD, FTIR, Raman, and XPS characterizations confirm the cubic spinel structure of Zinc ferrite with a semi-spherical shaped nanosized particles (10–15 nm) irrespective of Mg doping content. The BET surface area manifests a significant increase within Mg doping (39.3 m2/g) compared with the pure zinc ferrite (28.4 m2/g). Accordingly, Mg-doped Zinc ferrite powders demonstrate considerable adsorption capacities for Pb+2 (143.5 mg/g), Cu+2 (117 mg/g), and Cd+2 (77 mg/g) within 2 h under optimized experimental conditions. The prepared nanopowders exhibit high selectivity towards Pb+2 in simultaneous adsorption in aqueous solutions (85 mg/g) and real seawater samples. Nonetheless, the selectivity of Pb+2 ions drops dramatically to 25 mg/g within real seawater samples due to the strong ionic strength of high-salinity seawater. This study provides insights into the importance of doped spinel ferrite nanoparticles in highly efficient, rapid, and simultaneous adsorption of heavy metals. Besides, it reveals the challenge of performing the adsorption process in real seawater

    Stripping of Cu Ion from Aquatic Media by Means of MgY2O4@g-C3N4 Nanomaterials

    No full text
    International audienceIn this study, quaternary MgY2O5@g-C3N4 nanomaterials were produced using a simplistic ultrasonic power technique in the presence of an organic solvent, and their capability to abolish Cu (II) from an aqueous solution was evaluated. As validated by powder X-ray diffraction, the synthesized nanomaterials possessed excellent crystallinity, purity, and tiny crystalline size. According to BET and TEM, the nanomaterials with high porosity nanosheets and perfect active sites made Cu (II) removal from water treatment feasible. At a pH of 3.0, the MgY2O5@g-C3N4 displayed good Cu (II) adsorption capability. The Cu (II) adsorption adhered to the Langmuir adsorption model, with an estimated theoretical maximum adsorption aptitude of 290 mg/g. According to the kinetics investigation, the adsorption pattern best fitted the pseudo-second-order kinetics model. Depending on the FTIR results of the nanocomposite prior to and after Cu (II) uptake, surface complexation and ion exchange of Cu (II) ions with surface hydroxyl groups dominated the adsorption of Cu (II). The MgY2O5@g-C3N4 nanomaterials have great potential as adsorbents for Cu (II) removal due to their easy manufacturing process and high adsorption capacity. Additionally, the reuse of MgY2O4@g-C3N4 nanomaterials was tested through the succession of four adsorption cycles using HNO3. The result showed the good stability of this material for mineral pollution removal

    Fabrication of Mesoporous V2O5@g-C3N4 Nanocomposite as Photocatalyst for Dye Degradation

    No full text
    This study investigated the photocatalytic degradation of RB dye by V2O5@g-C3N4 nano-catalysts. The sonication method was utilized to create V2O5@g-C3N4 nano-catalysts. V2O5@g-C3N4 nano-catalysts were characterized using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), high-resolution electron microscopy (TEM), BET-surface area analyzer, X-ray photoelectron spectroscopy (XPS), and ultraviolet spectroscopy. In the meantime, the photocatalytic activity, pH, and photocatalyst dosage are investigated in depth to account for RB dye decolorization. The rate constant for RB dye photodegradation was 0.0517 (min&minus;1) and the decolorization rate was 93.4%. The degrading efficiency of RB dye by V2O5@g-C3N4 nanocatalysts is consistent with pseudo-first-order kinetics. The results of this study demonstrated that V2O5@g-C3N4 nanocatalysts are particularly effective at destroying dyes in water
    corecore