10 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Sialic Acids - From The Comprehension Of Their Involvement In Biological Processes To Antiinfluenza Drug Design [Ácidos Siálicos - Da Compreensão Do Seu Envolvimento Em Processos Biológicos Ao Desenvolvimento De Fármacos Contra O Agente Etiológico Da Gripe]

    No full text
    Sialic acids are nine-carbon carbohydrates that occur widely in nature and occupy the terminal portions of some glycoproteins and glycolipids of cell membranes. These carbohydrates are closely involved in cell-cell interactions and in processes such as microbial infection, inflammation, etc. Studies on the participation of sialic acids in biological processes have provided comprehension about their role in the infection by the influenza virus, the causal agent of flu. In this article, we present an overview of the importance of sialic acids in the influenza virus infection and how the knowledge of their involvement in this process has allowed the development of selective and efficient drugs against the virus.282306316Nelson, D.L., Cox, M.M., (2000) Lehninger Principles of Biochemistry, 3a Ed., , Worth Publisher: New York, cap. 3Voet, D., Voet, J.G., (1995) Biochemistry, 2a Ed., , John Wiley & Sons Inc.: New York, cap. 10 e 11Berg, J.M., Tymoczko, J., Stryer, L., (2002) Biochemistry, 5a Ed., , W. H. Freeman and Campany: New York, cap.11http://superfund.pharmacy.arizona.edu/toxamb/index.html, Imagem adaptada de Peña, C. E.Carter, D. E.Ayala-Fierro, FDwek, R.A., (1996) Chem. Rev., 96, p. 683Angata, T., Varki, A., (2002) Chem. Rev., 102, p. 439Varki, A., (1991) FASEB J., 5, p. 226Maru, I., Ohta, Y., Murata, K., Tsukada, Y., (1996) J. Biol. Chem., 271, p. 16294Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C., Reutter, W., (2001) Glycobiology, 11, pp. 11RJacobs, C.L., Goon, S., Yarema, K.J., Hinderlich, S., Hang, H.C., Chai, D.H., Bertozzi, C.R., (2001) Biochemistry, 40, p. 12864DeNinno, M.P., (1991) Synthesis, p. 583Gottschalk, A., (1951) Nature, 167, p. 845Koeller, K.M., Wong, C.H., (2000) Chem. Rev., 100, p. 4465Wilson, J.C., Von Itzstein, M., (2003) Curr. Drugs Targets: Infect. Disord., 4, p. 389Kiefel, M.J., Von Itzstein, M., (2002) Chem. Rev., 102, p. 471Kiefel, M.J., Von Itzstein, M., (1999) Prog. Med. Chem., 36, p. 1Sears, P., Wong, C.H., (1999) Angew. Chem., Int. Ed., 38, p. 2300Mammen, M., Choi, S.K., Whitesides, G.M., (1998) Angew. Chem., Int. Ed., 37, p. 2754Slee, D.H., Romano, S.J., Yu, J., Nguyen, T.N., John, J.K., Rahya, N.K., Axe, F.U., Ripka, W.C., (2001) J. Med. Chem., 44, p. 2094Gomes, L., (2001) J. Pneumol., 27, p. 97(2000) O Caminho Do Influenza: Ameaça Antiga, p. 1581. , Revista ISTOÉReportagem de capa, JaneiroForleo-Neto, E., Halker, E., Santos, V.J., Paiva, T.M., Toniolo-Neto, J., (2003) Rev. Soc. Bras. Med. Trop., 36, p. 267Cox, N.J., Subbarao, K., (1999) Infections Disease Clinics of North America, 354, p. 1277Hayden, F.G., Belshe, R.B., Clover, R.D., Hay, A.J., Oakes, M.G., Soo, W.N., (1989) Engl. J. Med., 321, p. 1696Keyser, L.A., Karl, M., Nafziger, A.N., Bertino Jr., J.S., (2000) Arch. Intern. Med., 160, p. 1485Hay, A.J., Wolstenholme, A.J., Skehel, J.J., Smith, M.H., (1985) EMBO J., 4, p. 3021Saul, H., (1995) New Scientist, p. 26Demicheli, V., Jefferson, T., Rivetti, D., Deeks, J., (2000) Vaccine, 18, p. 957Calfee, D.P., Hayden, F.G., (1998) Drugs, 56, p. 537Laver, W.G., Bischofberger, N., Webster, R.G., (1999) Scientific American, 280, p. 78Oxford, J.S., Lambkin, R., (1998) Drugs Discovery Today, 3, p. 448(1999) Weekly Report, 48, p. 1Wilson, I.A., Skehel, J.J., Wiley, D.C., (1981) Nature, 289, p. 366Wiley, D.C., Wilson, J.C., Skehel, J.J., (1981) Nature, 289, p. 373Palese, P., Schulman, J.L., Boto, G., Meindl, P., (1974) Virology, 59, p. 490Air, G.M., Laver, W.G., (1989) Proteins: Struct. Funct. Genet., 6, p. 341Corfield, T., (1992) Glycobiology, 2, p. 509Liu, C., Eichelberger, M.C., Compans, R.W., Air, G.M., (1995) J. Virol., 69, p. 1099http://isi3.isiknowledge.com/portal.cgi, O termo pesquisado foi "sialic acid"Prichett, T.J., Brossmer, R., Rose, U., Paulson, J.C., (1987) Virology, 160, p. 502Toogood, P.L., Galliker, P.K., Glick, G.D., Knowler, J.R., (1991) J. Med. Chem., 34, p. 3140Sauter, N.K., Bednarski, M.D., Wurzburg, B.A., Hanson, J.E., Whitesides, G.M., Skehel, J.J., Wiley, D.C., (1989) Biochemistry, 28, p. 8388Weinhold, E.G., Knowles, J.R., (1992) J. Am. Chem. Soc., 114, p. 9270Spevak, W., Nagy, J.O., Charych, D.H., Schaefer, M.E., Gilbert, J.H., Bednarski, M.D., (1993) J. Am. Chem. Soc., 115, p. 1146Koketsu, M., Nitoda, T., Sugino, H., Juneja, L.R., Kim, M., Yamamoto, T., Abe, N., Wong, C.H., (1997) J. Med. Chem., 40, p. 3332Kamitakahara, H., Suzuki, T., Nishigori, N., Suzuki, Y., Kanie, O., Wong, C.H., (1998) Angew. Chem., Int. Ed., 37, p. 1524Varghese, J.N., Laver, W.G., Colman, P.M., (1983) Nature, 303, p. 35Colman, P.M., Varghese, J.N., Laver, W.G., (1983) Nature, 303, p. 41Chong, A.K.J., Pegg, M.S., Taylor, N.R., Von Itzstein, M., (1992) Eur. J. Biochem., 207, p. 335Griffin, J.A., Campans, R.W., (1979) J. Exp. Med., 150, p. 379Miller, C.A., Wang, P., Flashner, M., (1978) Biochem. Biophys. Res. Commun., 83, p. 1479Taylor, N.R., Von Itzstein, M., (1994) J. Med. Chem., 37, p. 616Dyason, J.C., Von Itzstein, M., (2001) Aust. J. Chem., 54, p. 663Sollis, S.L., Smith, P.W., Howes, P.D., Cherry, P.C., Bethell, R.C., (1996) Bioorg. Med. Chem. Lett., 6, p. 1805Bossart-Whitaker, P., Carson, M., Babu, Y.S., Smith, C.D., Laver, W.G., Air, G.M., (1993) J. Mol. Biol., 232, p. 1069Von Itzstein, M., Dyason, J.C., Oliver, S.W., White, H.F., Wu, W.Y., Kok, G.B., Pegg, M.S., (1996) J. Med. Chem., 39, p. 388Masuda, T., Shibuya, S., Arai, M., Yoshida, S., Tomozawa, T., Ohno, A., Yamashita, A., Honda, T., (2003) Bioorg. Med. Chem. Lett., 13, p. 669http://www.omedon.co.uk/influenza/, e referências citadasSmith, P.W., Sollis, S.L., Howes, P.D., Cherry, P.C., Bethell, R.C., (1996) Bioorg. Med. Chem. Lett., 6, p. 1805Smith, P.W., Robison, J.E., Evans, D.N., Sollis, S.L., Howes, P.D., Trivedi, N., Bethell, R.C., (1999) Bioorg. Med. Chem. Lett., 9, p. 601Smith, P.W.S.L., Howes, P.D., Trivedi, N., (2000) Bioorg. Med. Chem. Lett., 10, p. 1257Williams, M., Bischofberger, N., Swaminathan, S., Kim, C.U., (1995) Bioorg. Med. Chem. Lett., 5, p. 2251Finley, J.B., Atigadda, V.R., Duarte, F., Zhao, J.J., Brouillette, W.J., Air, G.M., Luo, M., (1999) J. Mol. Biol., 295, p. 1107Kim, C.U., Lew, W., Willians, M.A., Wu, H., Zhang, L., Chen, X., Escarpe, P.A., Stevens, R.C., (1998) J. Med. Chem., 41, p. 2451Lew, W., Chen, X., Kim, C.U., (2000) Curr. Med. Chem., 7, p. 663Lew, W., Wu, H., Chen, X., Graves, B.J., Escarpe, P.A., MacArthur, H.L., Mendel, D.B., Kim, C.U., (2000) Bioorg. Med. Chem. Lett., 10, p. 1257Karpf, M., Trussardi, R., (2001) J. Org. Chem., 66, p. 2044Hanessian, S., Wang, J., Montgomery, D., Stoll, V., Stewart, K.D., Kati, W., Maring, C., Laver, W.G., (2002) Bioorg. Med. Chem. Lett., 12, p. 3425Kim, C.U., Lew, W., Willians, M.A., Liu, H., Zhang, L., Swaminathan, S., Bischofberger, N., Stevens, R.C., (1997) J. Am. Chem. Soc., 119, p. 681Ryan, D.M., Ticehurst, J., Dempsey, M.H., Penn, C.R., (1994) Antimicrob. Agents Chemother., 38, p. 2270Li, W., Escarpe, P.A., Eisenberg, E.J., Cundy, K.C., Sweet, C., Jakeman, K.J., Merson, J., Mendel, D.B., (1998) Antimicrob. Agents Chemother., 42, p. 647Mendel, D.B., Tai, C.Y., Escarpe, P.A., Li, W., Sidwell, R.W., Huffman, J.H., Sweet, C., Kim, C.U., (1998) Antimicrob. Agents Chemother., 42, p. 640http://www.tamiflu.comYamamoto, T., Kumazawa, H., Inami, K., Teshima, T., Shiba, T., (1992) Tetrahedron Lett., 33, p. 5791Babu, Y.S., Chand, P., Bantia, S., Kotian, P., Dehghani, A., El-Kattan, Y., Lin, T.H., Montgomery, J.A., (2000) J. Med. Chem., 43, p. 3482Bantia, S., Parker, C.D., Ananth, S.L., Horn, L.L., Andries, K., Chand, P., Kotian, P.L., Babu, Y.S., (2001) Antimicrob. Agents Chemother., 45, p. 1162Wang, G.T., Chen, Y., Wang, S., Gentles, R., Sowin, T., Kati, W., Muchmore, S., Laver, W.G., (2001) J. Chem. Soc., 44, p. 1192Luo, G., Torri, A., Harte, W.E., Danetz, S., Cianci, C., Tiley, L., Day, S., Krystal, M., (1997) J. Virol., 71, p. 4062Luo, G., Colonno, R., Krystal, M., (1996) Virology, 226, p. 66Yoshimoto, J., Kakui, M., Iwasaki, H., Fujiwara, T., Sugimoto, H., Hattori, N., (1999) Arch. Virol., 144, p. 865Yoshimoto, J., Yagi, S., Ono, J., Sugita, K., Hattori, N., Fujioka, T., Fujiwara, T., Hashimoto, N., (2000) J. Pharm. Pharmacol., 52, p. 1247McKimm-Breschkin, J.L., (2000) Antiviral Res., 47, p. 1Baum, E.Z., Wagaman, P.C., Ly, L., Turchi, I., Le, J., Bucher, D., Bush, K., (2003) Antiviral Res., 59, p. 1

    Parallels Between Plants And Animals In The Production And Molecular Targets Of Nitric Oxide

    No full text
    Considerable evidence that nitric oxide (NO) and its derivatives play major roles in mammals has led to an interest in the actions of these molecules in plant metabolism. The ubiquitous distribution of nitric oxide synthases (NOS) in mammalian cells has stimulated the search for an equivalent enzyme in plants. NOS-like activity has been found in many plants and NO has been shown to influence various developmental processes and to have a role in plant defense responses against pathogens. Several of the major NO targets characterized in animals also have found similar actions in plants. These results indicate that NO is a fundamental signaling molecule for plant metabolism, as it is in animals.82185191Alamillo, J.M., Garcia-Olmedo, F., Effects of urate, a natural inhibitor of peroxynitrite-mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae (2001) Plant J., 25, pp. 529-540Barroso, J.B., Corpas, F.J., Carreras, A., Sandalio, L.M., Valderrama, R., Palma, J.M., Lupianez, J.A., Del Rio, L.A., Localization of nitric oxide synthase in plant peroxisomes (1999) J. Biol. Chem., 274, pp. 36729-36733Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A., Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 1620-1624Beckman, J.S., Crow, J.P., Pathological implications of nitric oxide, superoxide and peroxynitrite formation (1993) Biochem. Soc. Trans., 21, pp. 330-334Beckman, J.S., Koppenol, W.H., Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly (1996) Am. J. Physiol. Cell Physiol., 40, pp. C1424-C1437Beligni, M.V., Lamattina, L., Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants (2000) Planta, 210, pp. 215-221Bowler, C., Yamagata, H., Neuhaus, G., Chua, N.H., Phytochrome signal-transduction pathways are regulated by reciprocal control mechanisms (1994) Gene Dev., 8, pp. 2188-2202Brown, G.C., Nitric oxide and mitochondrial respiration (1999) Biochim. Biophys. Acta, 1411, pp. 351-369Buechler, W.A., Ivanova, K., Wolfram, G., Drummer, C., Heim, J.M., Gerzer, R., Soluble guanylyl cyclase and platelet function (1994) Ann. NY Acad. Sci., 714, pp. 151-157Clark, D., Durner, J., Navarre, D.A., Klessig, D.F., Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase (2000) Mol. Plant Microbe Interact., 13, pp. 1380-1384Conner, E.M., Brand, S.J., Davis, J.M., Kang, D.Y., Grisham, M.B., Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease: Toxins, mediators, and modulators of gene expression (1996) Inflamm. Bowel Dis., 2, pp. 133-147Cooney, R.V., Harwood, P.J., Custer, L.J., Franke, A.A., Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids (1994) Environm. Health Perspectives, 102, pp. 460-462Cooper, C.E., Nitric oxide and iron proteins (1999) Biochim. Biophys. Acta, 1411, pp. 290-309Cueto, M., Hernández-Perera, O., Martin, R., Bentura, M.L., Rodrigo, J., Lamas, S., Golvano, M.P., Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus (1996) FEBS Lett., 398, pp. 159-164Delledonne, M., Xia, Y.J., Dixon, R.A., Lamb, C., Nitric oxide functions as a signal in plant disease resistance (1998) Nature, 394, pp. 585-588Denninger, J.W., Marletta, M.A., Guanylate ciclase NO/cGMP signaling pathway (1999) Biochim. Biophys. Acta, 1411, pp. 334-350Drapier, J.C., Interplay between NO and [Fe-S] clusters: Relevance to biological systems (1997) Methods, 11, pp. 319-329Durner, J., Wendehenne, D., Klessig, D.F., Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose (1998) Proc. Nat. Acad. Sci. USA, 95, pp. 10328-10333Ferrer, M.A., Barceló, A.R., Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans (1999) Plant Cell Environ., 22, pp. 891-897Foissner, I., Wendehenne, D., Langebartels, C., Durner, J., In vivo imaging of an elicitor-induced nitric oxide burst in tobacco (2000) Plant J., 23, pp. 817-824Förstermann, U., Schmidt, H.H.H.W., Pollock, J.S., Sheng, H., Mitchell, J.A., Warner, T.D., Nakane, M., Murad, F., Isoforms of nitric oxide synthase. Characterization an purification from different cell types (1991) Biochem. Pharmacol., 42, pp. 1849-1857Furchgott, R.F., Carvalho, M.H., Khan, M.T., Matsunaga, K., Evidence for endothelium-dependent vasodilation of resistance vessels by acetylcoline (1987) Blood Vessels, 24, pp. 145-149Gaston, B., Nitric oxide and thiol groups (1999) Biochim. Biophys. Acta, 1411, pp. 323-333Giba, Z., Grubisic, D., Todorovic, S., Sajc, L., Stojakovic, D., Konjevic, R., Effect of nitric oxide - Releasing compounds on phytochrome-controlled germination of empress tree seeds (1998) Plant Growth Regul., 26, pp. 175-181Gouvêa, C.M.C.P., Souza, J.F., Magalhães, A.C.N., Martins, I.S., NO-releasing substances that induce growth elongation in maize root segments (1997) Plant Growth Regul., 2, pp. 183-187Hogg, N., Kalyanaraman, B., Nitric oxide and lipid peroxidation (1999) Biochim. Biophys. Acta, 1411, pp. 378-384Huang, J.S., And Knopp, J.A., Involvement of nitric oxide in Ralstonia solanacearum- induced hypersensitive reaction in tobacco (1998) Bacterial Wilt Disease: Molecular and Ecological Aspects, pp. 218-224. , pubHufton, C.A., Besford, R.T., Wellburn, A.R., Effects of NO (+NO2) pollution on growth, nitrate reductase activities and associated protein contents in glasshouse lettuce grown hydroponically in winter with CO2 enrichment (1996) New Phytol., 133, pp. 495-501Jaffrey, S.R., Snyder, S.H., Nitric oxide: A neural messenger (1995) Annu. Rev. Cell Dev. Biol., 11, pp. 417-440Keeley, J.E., Fotheringham, C.J., Trace gas emissions and smoke-induced seed germination (1997) Science, 276, pp. 1248-1250Kelm, M., Nitric oxide metabolism and breakdown (1999) Biochim. Biophys. Acta, 1411, pp. 273-289Klepper, L., Comparison between NOx evolution mechanisms of wild-type and nr1 mutant soybean leaves (1990) Plant Physiol., 93, pp. 26-32Klessig, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M., Silva, H., Nitric oxide and salycilic acid signaling in plant defense (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 8849-8855Kuc, J., Phytoalexins, stress metabolism, and disease resistance in plants (1995) Annu. Rev. Phytopathol., 33, pp. 275-297Lamas, S., Pérez-Sala, D., Moncada, S., Nitric oxide: From discovery to the clinic (1998) Trends Pharmacol. Sci., 19, pp. 436-438Lamb, C., Dixon, R.A., The oxidative burst in plant disease resistance (1997) Ann. Rev. Plant Physiol. Plant Mol. Biol., 48, pp. 251-275Leshem, Y.Y., Nitric oxide in biological systems (1996) J. Plant Growth Regul., 18, pp. 155-159Leshem, Y.Y., Haramaty, E.J., The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn foliage (1996) J. Plant Physiol., 148, pp. 258-263Leshem, Y.Y., Wills, R.B.H., Ku, V.V.V., Evidence for the function of the free radical gas nitric oxide (NO) - As an endogenous maturation and senescence regulating factor in higher plants (1998) Plant Physiol. Bioch., 36, pp. 825-833Li, H.G., Förstermann, U., Nitric oxide in the pathogenesis of vascular disease (2000) J. Pathol., 190, pp. 244-254Mathieu, C., Moreau, S., Frendo, P., Puppo, A., Davies, M.J., Direct detection of radicals in intact soybean nodules: Presence of nitric oxide-leghemoglobin complexes (1998) Free Radical Biol. Med., 24, pp. 1242-1249Mayer, K., Sequence and analysis of chromosome 4 of the Arabidopsis thaliana (1999) Nature, 402, p. 769Millar, A.H., Day, D.A., Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria (1996) FEBS Lett., 398, pp. 155-158Navarre, D.A., Wendehenne, D., Durner, J., Noad, R., Klessig, D.F., Nitric oxide modulates the activity of tobacco aconitase (2000) Plant Physiol., 122, pp. 573-582Ninnemann, H., Maier, J., Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa (1996) Photochem. Photobiol., 64, pp. 393-398Noritake, T., Kawakita, K., Doke, N., Nitric oxide induces phytoalexin accumulation in potato tuber tissues (1996) Plant Cell Physiol., 37, pp. 113-116Palmer, R.M.J., Ferrige, A.G., Moncada, S., Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor (1987) Nature, 327, pp. 524-526Pantopoulos, K., Weiss, G., Hentze, M.W., Nitric oxide and post-translational control of cellular iron traffic (1994) Trends Cell Biol., 4, pp. 82-85Patel, R.P., McAndrew, J., Sellak, H., White, C.R., Jo, H., Freeman, B.A., Darley-Usmar, V.M., Biological aspects of reactive nitrogen species (1999) Biochim. Biophys. Acta, 1411, pp. 385-400Pedroso, M.C., Magalhães, J.R., Durzan, D., A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues (2000) J. Exp. Bot., 51, pp. 1027-1036Pollock, J.S., Förstermann, U., Mitchell, J.A., Warner, T.D., Schmidt, H.H., Nakane, M., Murad, F., Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 10480-10484Ribeiro, E.A., Cunha, F.Q., Tamashiro, W.M.S.C., Martins, I.S., Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells (1999) FEBS Lett., 445, pp. 283-286Robbins, R.A., Grisham, M.B., Nitric oxide (1997) Int. J. Biochem. Cell Biol., 29, pp. 857-860Rowland, A., Murray, A.J., Wellburn, A.R., Oxides of nitrogen and their impact upon vegetation (1985) Rev. Environ. Health, 5, pp. 295-342Salter, M., Knowles, R.G., Moncada, S., Widespread tissue distribution, species distribution and changes in activity of Ca(2+)-dependent and Ca(2+)-independent nitric oxide synthases (1991) FEBS Lett., 291, pp. 145-149Saviani, E.E., Orsi, C.H., Oliveira, J.F.P., Pinto-Maglio, C.A.F., Salgado, I., Participation of the mitochondrial permeability transition pore in nitric oxide-induced plant cell death (2002) FEBS Lett., 510, pp. 136-140Scherer, G.F.E., Holk, A., NO donors mimic and NO inhibitors inhibit cytokinin action in betalaine accumulation in Amaranthus caudatus (2000) Plant Growth Regul., 32, pp. 345-350Silvagno, F., Xia, H.H., Bredt, D.S., Neuronal nitric-oxide synthase-m, an alternatively spliced isoform expressed in differentiated skeletal muscle (1996) J. Biol. Chem., 271, pp. 11204-11208Stuehr, D.J., Structure-function aspects in the nitric oxide synthases (1997) Annu. Rev. Pharmacol. Toxicol., 37, pp. 339-359Tayeh, M.A., Marletta, M.A., Macrophage oxidation of L-arginine on nitric oxide, nitrite and nitrate. Tetrahidrobiopterin is required as a cofator (1989) J. Biol. Chem., 264, pp. 19654-19658Warner, T.D., Mitchell, J.A., Sheng, H., Murand, F., Effects of cyclic GMP on smooth muscle relaxation (1994) Adv. Pharmacol., 26, pp. 171-194Wei, X.-Q., Charles, I.G., Smith, A., Ure, J., Feng, C.-J., Huang, F.P., Xu, D.M., Liew, F.Y., Altered immune-responses in mice lacking inducible nitric-oxide synthase (1995) Nature, 375, pp. 408-411Wellburn, A.R., Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? (1990) New Phytol., 115, pp. 395-429Wildt, J., Kley, D., Rockel, A., Rockel, P., Segschneider, H.J., Emission of NO from several higher plant species (1997) J. Geophys. Res.-Atmos., 102, pp. 5919-5927Yamasaki, H., Sakihama, Y., Takahashi, S., An alternative pathway for nitric oxide production in plants: New features of an old enzyme (1999) Trends in Plant Sci., 4, pp. 128-129Yamasaki, H., Shimoji, H., Ohshiro, Y., Sakihama, Y., Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria (2001) Nitric Oxide-Biol. Chem., 5, pp. 261-27

    Curcumin Conjugates And Metallocomplexes As Lead Compounds For Development Of Anticancer Agents - A Short Review

    No full text
    The plant kingdom is a rich source of compounds with anticancer activities. Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] (1) is a secondary metabolite produced by rhizomes of Curcuma longa that has been used for centuries in traditional Medicine in Asia. Anticancer activity is one of the pharmacological properties of curcumin (1) that has been widely explored. Its targets include transcription factors, growth and angiogenesis regulators, apoptosis-related genes, adhesion-related molecules, and cellular signaling molecules. Some curcumin conjugates and metallocomplexes have been synthesized, characterized and evaluated for anticancer activity. In this mini-review, we discuss the mechanism of action by which curcumin (1) inhibits the progression of tumor growth and also the antiproliferative activity of curcumin conjugates and metallocomplexes on human cancer cells. The understanding of how these conjugates and metallocomplexes exert their anticancer activities is essential for future development of effective drugs. © 2008 Bentham Science Publishers Ltd.43189199Tallman, M.S., Gilliland, D.G., Rowe, J.M., Drug therapy for acute myeloid leukemia (2005) Blood, 106, pp. 1154-1163Tallman, M.S., Treatment of relapsed or refractory acute promyelocytic leukemia (2007) Best Pract. Res. Clin. Haematol, 20, pp. 57-65Newman, D.J., Cragg, G.M., Snader, K.M., Natural products as sources of new drugs over the period 1981-2002 (2003) J. Nat. Prod, 66, pp. 1022-1037Butler, M.S., The role of natural product chemistry in drug discovery (2004) J. Nat. Prod, 67, pp. 2141-2153Butler, M.S., Natural products to drugs: Natural product derived compounds in clinical trials (2005) Nat. Prod. Rep, 22, pp. 162-195Lee, K.H., Current developments in the discovery and design of new drug candidates from plant natural product leads (2004) J. Nat. Prod, 67, pp. 273-283de Fátima, A., Modolo, L.V., Conegero, L.S., Ferreira, C.V., Pilli, R.A., Ferreira, C.V., Kohn, L.K., de Carvalho, J.E., Styryl lactones and their derivatives: Biological activities, mechanism of action and potential leads for drug design (2006) Curr. Med. Chem, 13, pp. 3371-3384de Fátima, A., Modolo, L.V., Sanches, A.C.C., Porto, R.R., Wound healing agents: The role of natural and non-natural products in drug development (2008) Mini-Rev. Med. Chem, 8, pp. 879-888Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A.B., Aggarwal, B.B., Curcumin and cancer: An "old-age" disease with an "age-old" solution (2008) Cancer Lett, 267, pp. 133-164Chattopadhyay, I., Biswas, K., Bandyopadhyay, U., Banerjee, R.K., Turmeric and curcumin: Biological actions and medicinal applications (2004) Curr. Sci, 87, pp. 44-53Ligeret, H., Barthelemy, S., Zini, R., Tillement, J.P., Labidalle, S., Morin, D., Effects of curcumin and curcumin derivatives on mitochondrial permeability transition pore (2004) Free Radic. Biol. Med, 36, pp. 919-929Ohtsu, H., Xiao, Z., Ishida, J., Nagai, M., Wang, H.K., Itokawa, H., Su, C.Y., Lee, K.H., Antitumor agents. 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents (2002) J. Med. Chem, 45, pp. 5037-5042Lin, L., Shi, Q., Su, C.Y., Shih, C.C.Y., Lee, K.H., Antitumor agents 247. New 4-ethoxycarbonylethyl curcumin analogues as potential antiandrogenic agents (2006) Bioorg. Med. Chem, 14, pp. 2527-2534Lin, L., Shi, Q., Nyarko, A.K., Bastow, K.F., Wu, C.-C., Su, C.-Y., Shih, C.C.-Y., Lee, K.-H., Antitumor agents. 250. Design and synthesis of new curcumin analogues as potential antiprostate cancer agents (2006) J. Med. Chem, 49, pp. 3963-3972Gafner, S., Lee, S.K., Cuendet, M., Barthélémy, S., Vergnes, L., Labidalle, S., Mehta, R.G., Pezzuto, J.M., Biologic evaluation of curcumin and structural derivatives in cancer chemoprevention model systems (2004) Phytochemistry, 65, pp. 2849-2859Weber, W.M., Hunsaker, L.A., Roybal, C.N., Bobrovnikova-Marjon, E.V., Abcouwer, S.F., Royer, R.E., Deck, L.M., Jagt, D.L.V., Activation of NF..B is inhibited by curcumin and related enones (2006) Bioorg. Med. Chem, 14, pp. 2450-2461Shim, J.S., Kim, D.H., Jung, H.J., Kim, J.H., Lim, D., Lee, S.K., Kim, K.W., Kwon, H.J., Hydrazinocurcumin, a novel synthetic curcumin derivative, is a potent inhibitor of endothelial cell proliferation (2002) Bioorg. Med. Chem, 10, pp. 2439-2444Robinson, T.P., Ehlers, T., Hubbard, R.B., Bai, X., Arbiser, J.L., Goldsmith, D.J., Bowen, J.P., Design, synthesis, and biological evaluation of angiogenesis inhibitors: Aromatic enone and dienone analogues of curcumin (2003) Bioorg. Med. Chem, 13, pp. 115-117Araújo, C.A.C., Leon, L.L., Biological acitivities of Curcuma longa L (2001) Mem. Inst. Oswaldo Cruz, 96, pp. 723-728Aggarwal, B.B., Kumar, A., Bharti, A.C., Anticancer potential of curcumin: Preclinical and clinical studies (2003) Anticancer Res, 23, pp. 363-398Duvoix, A., Blasius, R., Delhalle, S., Schnekenburger, M., Morceau, F., Henry, E., Dicato, M., Diederich, M., Chemopreventive and therapeutic effects of curcumin (2005) Cancer Lett, 223, pp. 181-190Maheshwari, R.K., Singh, A.K., Gaddipati, J., Srimal, R.C., (2006) Multiple activities of curcumin: A short reviewShishodia, S., Chaturvedi, M.M., Aggarwal, B.B., Role of curcumin in cancer therapy (2007) Curr. Probl. Cancer, 31, pp. 243-305Surh, Y.-J., Chun, K.-S., In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease (2007) Springer US, 595, pp. 149-172. , Aggarwal, B. B, Surh, Y.-J, Shishodia, S, Eds, Chapter 5, pSimoni, D., Rizzi, M., Rondanin, R., Baruchello, R., Marchetti, P., Invidiata, F.P., Labbozzetta, M., D'Alessandro, N., Antitumor effects of curcumin and structurally β-diketone modified analogs on multidrug resistant cancer cells (2008) Bioorg. Med. Chem. Lett, 18, pp. 845-849Ishida, J., Ohtsu, H., Tachibana, Y., Nakanishi, Y., Bastow, K.F., Nagai, M., Wang, H.-K., Lee, K.-H., Antitumor agents. Part 214: Synthesis and evaluation of curcumin analogues as cytotoxic agents (2002) Bioorg. Med. Chem, 10, pp. 3481-3487Youssef, D., Nichols, C.E., Cameron, T.S., Balzarini, J., De Clercq, E., Jha, A., Design, synthesis, and cytostatic activity of novel cyclic curcumin analogues (2007) Bioorg. Med. Chem. Lett, 17, pp. 5624-5629Thompson, K.H., Bohmerle, K., Polishchuk, E., Martins, C., Toleikis, P., Tse, J., Yuen, V., Orvig, C., Complementary inhibition of synoviocyte, smooth muscle cell or mouse lymphoma cell proliferation by a vanadyl curcumin complex compared to curcumin alone (2004) J. Inorg. Biochem, 98, pp. 2063-2070Mohammadi, K., Thompson, K.H., Patrick, B.O., Storr, T., Martins, C., Polishchuk, E., Yuen, V.G., Orvig, C., Synthesis and characterization of dual function vanadyl, gallium and indium curcumin complexes for medicinal applications (2005) J. Inorg. Biochem, 99, pp. 2217-2225Um, Y., Cho, S., Woo, H.B., Kim, Y.K., Kim, H., Ham, J., Kim, S.-N., Lee, S., Synthesis of curcumin mimics with multidrug resistance reversal activities (2008) Bioorg. Med. Chem, 16, pp. 3608-3615Pillai, G.R., Srivastava, A.S., Hassanein, T.I., Chauhan, D.P., Carrier, E., Induction of apoptosis in human lung cancer cells by curcumin (2004) Cancer Lett, 208, pp. 163-170Zhang, J., Qi, H., Wu, C., Research of anti-proliferation of curcumin on A549 human lung cancer cells and its mechanism (2004) J. Chin. Med. Mat, 27, pp. 923-927Safavy, A., Raisch, K.P., Mantena, S., Sanford, L.L., Sham, S.W., Krishna, N.R., Bonner, J.A., Design and development of water-soluble curcumin conjugates as potential anticancer agents (2007) J. Med. Chem, 50, pp. 6284-6288Pan, M.-H., Chang, W.-L., Lin-Shiau, S.-Y., Ho, C.-T., Lin, J.-K., Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells (2001) J. Agric. Food Chem, 49, pp. 1464-1474Atsumi, T., Tonosaki, K., Fujisawa, S., Induction of early apoptosis and ROS-generation activity in human gingival fibroblasts (HGF) and human submandibular gland carcinoma (HSG) cells treated with curcumin (2006) Arch. Oral Biol, 51, pp. 913-921Shi, M., Cai, Q., Yao, L., Mao, Y., Ming, Y., Ouyang, G., Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells (2006) Cell Biol. Inter, 30, pp. 221-226Bachmeier, B.E., Mohrenz, I.V., Mirisola, V., Schleicher, E., Romeo, F., Höhneke, C., Jochum, M., Pfeffer, U., Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB (2008) Carcinogenesis, 29, pp. 779-789Verma, S.P., Goldin, B.R., Lin, P.S., The inhibition of the estrogenic effects of pesticides and environmental chemicals by curcumin and isoflavonoids (1998) Environ. Health Perspect, 106, pp. 807-812Tong, Q.S., Zheng, L.D., Lu, P., Jiang, F.C., Chen, F.M., Zeng, F.Q., Wang, L., Dong, J.H., Apoptosis-inducing effects of curcumin derivatives in human bladder cancer cells (2006) Anti-cancer Drugs, 17, pp. 279-287Ohori, H., Yamakoshi, H., Tomizawa, M., Shibuya, M., Kakudo, Y., Takahashi, A., Takahahi, S., Shibata, H., Synthesis and biological analysis of new curcumin analogues bearing an enhance potential for the medicinal treatment of cancer (2006) Mol. Cancer Ther, 5, pp. 2563-2571Du, B., Jiang, L., Xia, Q., Zhong, L., Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29 (2006) Chemotherapy, 52, pp. 23-28Shi, W., Dolai, S., Rizk, S., Hussai, A., Tariq, H., Averick, S., L'Amoreaux, W., Raja, K., Synthesis of monofunctional curcumin derivatives, clicked curcumin dimer, and a PAMAN dendrimer curcumin conjugate for therapeutic applications (2007) Org. Lett, 9, pp. 5461-5464Dubey, S.K., Sharma, A.K., Narain, U., Misra, K., Pati, U., Design, synthesis and characterization of some bioactive conjugates of curcumin with glycine, glutamic acid, valine and demethylenated piperic acid and study of their antimicrobial and antiproliferative properties (2008) Eur. J. Med. Chem, , In pressKaminaga, Y., Nagatsu, A., Akiyama, T., Sugimoto, N., Yamazaki, T., Maitani, T., Mizukami, H., Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus (2003) FEBS Lett, 555, pp. 311-316Mohri, K., Watanabe, Y., Yoshida, Y., Satoh, M., Isobe, K., Sugimoto, N., Tsuda, Y., Synthesis of glycosylcurcuminoids (2003) Chem. Pharm. Bull, 51, pp. 1268-1272Mishra, S., Narain, U., Mishra, R., Misra, K., Design, development and synthesis of mixed bioconjugates of piperic acidglycine, curcumin-glycine/alanine and curcumin-glycine-piperic acid and their antibacterial and antifungal properties (2005) Bioorg. Med. Chem, 13, pp. 1477-1486Suzuki, M., Nakamura, T., Iyoki, S., Fujiwara, A., Watanabe, Y., Mohri, K., Isobe, K., Ono, K., Yano, S. (2005) Elucidation of anti 198 Current Bioactive Compounds 2008, 4, No. 3 de Fátima et al. allergic activities of curcumin-related compounds with a special reference to their anti-oxidative activities. Biol. Pharm. Bull., 28, 438-1443Shimoda, K., Hara, T., Hamada, H., Hamada, H., Synthesis of curcumin β-maltooligosaccharides through biocatalytic glycosylation with Strophanthus gratus cell culture and cyclodextrine glucanotransferase (2007) Tetrahedron Lett, 48, pp. 4029-4032John, V.D., Krishnankutty, K., Synthesis, characterization and antitumour activities of some synthetic curcuminoid analogues and their copper complexes (2005) Trans. Metal Chem, 30, pp. 229-233John, V.D., Krishnankutty, K., Antitumour activity of synthetic curcuminoid analogues (1,7-diaryl-1,6-heptadiene-3,5-diones) and their copper complexes (2006) App. Organomet. Chem, 20, pp. 477-482Pucci, D., Bloise, R., Bellusci, A., Bernardini, S., Ghedini, M., Pirillo, S., Valentini, A., Crispini, A., Curcumin and cyclopalladated complexes: A recipe for bifunctional biomaterials (2007) J. Inorg. Biochem, 101, pp. 1013-1022Sharma, K.K., Chandra, S., Basu, D.K., Synthesis and antiarthritic study of a new orally active diferuloyl methane (curcumin) gold complex (1987) Inorg. Chim. Acta, 135, pp. 47-48Vajragupta, O., Boonchoong, P., Watanabe, H., Tohda, M., Kummasud, N., Sumanont, Y., Manganese complexes of curcumin and its derivatives: Evaluation for the radical scavenging ability and neuroprotective activity (2003) Free Rad. Biol. Med, 35, pp. 1632-1644Sumanont, Y., Murakami, Y., Tohda, M., Vajragupta, O., Watanabe, H., Matsumoto, K., Prevention of kainic acidinduced changes in nitric oxide level and neuronal cell damage in the rat hippocampus by manganese complexes of curcumin and diacetylcurcumin (2006) Life Sci, 78, pp. 1884-1891Sumanont, Y., Murakami, Y., Tohda, M., Vajragupta, O., Watanabe, H., Matsumoto, K., Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acidinduced neurotoxic responses in the rat hippocampus (2007) Biol. Pharm. Bull, 30, pp. 1732-1739Dutta, S., Murugkar, A., Gandhe, N., Padhye, S., Enhanced antioxidant activities of metal conjugates of curcumin derivatives (2001) Metal Based Drugs, 8, pp. 183-188Barik, A., Mishra, B., Shen, L., Mohan, H., Kadam, R.M., Dutta, S., Zhang, H.Y., Priyadarsini, K.I., Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions (2005) Free Radic. Biol. Med, 39, pp. 811-822Aggarwal, B.B., Sundaram, C., Malani, N., Ichikawa, H., Curcumin: The Indian solid gold (2007) Adv. Exp. Med. Biol, 595, pp. 1-75Menon, V.P., Sudheer, A.S., (2007) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, 595, pp. 105-125. , Aggarwal, B.B, Surh, Y.-J, Shishodia, S, Eds, Springer US, Chapter 3, pWei, Q.Y., Chen, W.F., Zhou, B., Yang, L., Liu, Z.L., Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues (2006) Biochim. Biophys. Acta, 1760, pp. 70-77Yoshino, M., Haneda, M., Naruse, M., Htay, H.H., Tsubouchi, R., Qiao, S.L., Li, W.H., Yokochi, T., Prooxidant activity of curcumin: Copper-dependent formation of 8-hydroxy-2′-deoxyguanosine in DNA and induction of apoptotic cell death (2004) Toxicol. Vitro, 18, pp. 783-789Ying, L., Hofseth, L.J., An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer (2007) Cancer Res, 67, pp. 1407-1410Chin, K., Kurashima, Y., Ogura, T., Tajiri, H., Yoshida, S., Esumi, H., Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells (1997) Oncogene, 15, pp. 437-442Singh, R.P., Agarwal, R., Inducible nitric oxide synthasevascular endothelial growth factor axis: A potential target to inhibit tumor angiogenesis by dietary agents (2007) Curr. Cancer Drug Targets, 7, pp. 475-483Landino, L.M., Crews, B.C., Timmons, M.D., Morrow, J.D., Marnett, L.J., Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 15069-15074Dairou, J., Atmane, N., Rodrigues-Lima, F., Dupret, J.M., Peroxynitrite irreversibly inactivates the human xenobioticmetabolizing enzyme arylamine N-acetyltransferase 1 (NAT1) in human breast cancer cells: A cellular and mechanistic study (2004) J. Biol. Chem, 279, pp. 7708-7714Huang, M.T., Lysz, T., Ferraro, T., Abidi, T.F., Laskin, J.D., Conney, A.H., Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis (1991) Cancer Res, 51, pp. 813-819Qiao, L., Kozoni, V., Tsioulias, G.J., Koutsos, M.I., Hanif, R., Shiff, S.J., Selected eicosanoids increase the proliferation rate of human colon carcinoma cell lines and mouse colonocytes in vivo (1995) Biochim. Biophys. Acta, 1258, pp. 215-223Imler, J.L., Wasylyk, B., AP1, a composite transcription factor implicated in abnormal growth control (1989) Prog. Growth Factor Res, 1, pp. 69-77Dedieu, S., Lefebvre, P., Retinoids interfere with the AP1 signalling pathway in human breast cancer cells (2006) Cell Signal, 18, pp. 889-898Shishodia, S., Singh, T., Chaturvedi, M.M., Modulation of transcription factors by curcumin (2007) Adv. Exp. Med. Biol, 595, pp. 127-148Andela, V.B., Gordon, A.H., Zotalis, G., Rosier, R.N., Goater, J.J., Lewis, G.D., Schwarz, E.M., O'Keefe, R.J., NFkappaB: A pivotal transcription factor in prostate cancer metastasis to bone (2003) Clin. Orthop. Relat. Res, 415, pp. S75-S85Tergaonkar, V., NFkappaB pathway: A good signaling paradigm and therapeutic target (2006) Int. J. Biochem. Cell Biol, 38, pp. 1647-1653Guadagni, F., Ferroni, P., Palmirotta, R., Portarena, I., Formica, V., Roselli, M., TNF/VEGF cross-talk in chronic inflammationrelated cancer initiation and progression: An early target in anticancer therapeutic strategy (2007) In Vivo, 21, pp. 147-161Mocellin, S., Nitti, D., TNF and cancer: The two sides of the coin (2008) Front. Biosci, 13, pp. 2774-2783Turkson, J., STAT proteins as novel targets for cancer drug discovery (2004) Expert. Opin. Ther. Targets, 8, pp. 409-422Blasius, R., Reuter, S., Henry, E., Dicato, M., Diederich, M., Curcumin regulates signal transducer and activator of transcription (STAT) expression in K562 cells (2006) Biochem. Pharmacol, 72, pp. 1547-1554Chen, W.H., Chen, Y., Cui, G.H., Gu, J.X., Hu, D., Chen, W.K., Li, X.G., Effect of curcumin on STAT5 signaling pathway in primary CML cells (2004) Zhongguo Shi Yan Xue Ye Xue Za Zhi, 12, pp. 572-576Chen, W.H., Chen, Y., Gu, J.X., He, J., Effect of curcumin on STAT5 signaling molecule in K562 cells (2004) Zhonghua Xue Ye Xue Za Zhi, 25, pp. 151-153Natarajan, C., Bright, J.J., Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes (2002) J. Immunol, 168, pp. 6506-6513Rajasingh, J., Raikwar, H.P., Muthian, G., Johnson, C., Bright, J.J., Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia (2006) Biochem. Biophys. Res. Commun, 340, pp. 359-368Jacob, A., Wu, R., Zhou, M., Wang, P., Mechanism of the anti-inflammatory effect of curcumin: PPAR-γ Activation (2007) PPAR Res, 2007, p. 89369Chen, A., Xu, J., Activation of PPAR{gamma} by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR (2005) Am. J. Physiol. Gastrointest. Liver Physiol, 288, pp. G447-G456Song, G., Mao, Y.B., Cai, Q.F., Yao, L.M., Ouyang, G.L., Bao, S.D., Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosisrelated protein expression (2005) Braz. J. Med. Biol. Res, 38, pp. 1791-1798Liu, E., Wu, J., Cao, W., Zhang, J., Liu, W., Jiang, X., Zhang, X., Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma (2007) J. Neurooncol, 85, pp. 263-270Gavert, N., Ben-Ze'ev, A., Beta-catenin signaling in biological control and cancer (2007) J. Cell Biochem, 102, pp. 820-828Takahashi-Yanaga, F., Sasaguri, T., The Wnt/β-catenin signaling pathway as a target in drug discovery (2007) J. Pharmacol. Sci, 104, pp. 293-302Tycko, B., Li, C.M., Buttyan, R., The Wnt/beta-catenin pathway in Wilms tumors and prostate cancers (2007) Curr. Mol. Med, 7, pp. 479-489Park, C.H., Hahm, E.R., Park, S., Kim, H.K., Yang, C.H., The inhibitory mechanism of curcumin and its derivative against beta-catenin/ Tcf signaling (2005) FEBS Lett, 579, pp. 2965-2971Jaiswal, A.S., Marlow, B.P., Gupta, N., Narayan, S., Betacatenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells (2002) Oncogene, 21, pp. 8414-8127Narayan, S., Curcumin, a multi-functional chemopreventive agent, blocks growth of colon cancer cells by targeting betacatenin-mediated transactivation and cell-cell adhesion pathways (2004) J. Mol. Histol, 35, pp. 301-307Ciolino, H.P., Daschner, P.J., Wang, T.T., Yeh, G.C., Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells (1998) Biochem. Pharmacol, 56, pp. 197-206Thapliyal, R., Deshpande, S.S., Maru, G.B., Effects of turmeric on the activities of benzo(a)pyrene-induced cytochrome P-450 isozymes (2001) J. Environ. Pathol. Toxicol. Oncol, 20, pp. 59-63Thapliyal, R., Maru, G.B., Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo (2001) Food Chem. Toxicol, 39, pp. 541-547Bhandarkar, S.S., Arbiser, J.L., Curcumin as an inhibitor of angiogenesis (2007) Adv. Exp. Med. Biol, 595, pp. 185-195Chen, W.H., Chen, Y., Cui, G.H., Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells and on angiogenesis in ECV304 cells (2005) Chin. Med. J. (Engl), 118, pp. 2052-2057Gately, S., Li, W.W., Multiple roles of COX-2 in tumor angiogenesis: A target for antiangiogenic therapy (2004) Semin. Oncol, 31, pp. 2-11Arbiser, J.L., Klauber, N., Rohan, R., van Leeuwen, R., Huang, M.T., Fisher, C., Flynn, E., Byers, H.R., Curcumin is an in vivo inhibitor of angiogenesis (1998) Mol. Med, 4, pp. 376-383Rundhaug, J.E., Matrix metalloproteinases and angiogenesis (2005) J. Cell. Mol. Med, 9, pp. 267-285Smith, P.C., Santibañez, J.F., Morales, J.P., Martinez, J., Epidermal growth factor stimulates urokinase-type plasminogen activator expression in human gingival fibroblasts. Possible modulation by genistein and curcumin (2004) J. Periodontal. Res, 39, pp. 380-387Mitra, A., Chakrabarti, J., Banerji, A., Chatterjee, A., Das, B.R., Curcumin, a potential inhibitor of MMP-2 in human laryngeal squamous carcinoma cells HEp2 (2006) J. Environ. Pathol. Toxicol. Oncol, 25, pp. 679-690Saja, K., Babu, M.S., Karunagaran, D., Sudhakaran, P.R., Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells (2007) Int. Immunopharmacol, 7, pp. 1659-1667Shankar, S., Ganapathy, S., Chen, Q., Srivastava,
    corecore