198 research outputs found

    WHO consultation on Respiratory Syncytial Virus Vaccine Development Report from a World Health Organization Meeting held on 23-24 March 2015.

    Get PDF
    Respiratory syncytial virus (RSV) is a globally prevalent cause of lower respiratory infection in neonates and infants. Despite its disease burden, a safe and effective RSV vaccine has remained elusive. In recent years, improved understanding of RSV biology and innovations in immunogen design has resulted in the advancement of multiple vaccine candidates into the clinical development pipeline. Given the growing number of vaccines in clinical trials, the rapid pace at which they are being tested, and the likelihood that an RSV vaccine will reach the commercial market in the next 5-10 years, consensus and guidance on clinical development pathways and licensure routes are needed now, before large-scale efficacy trials commence. In pursuit of this aim, the World Health Organization convened the first RSV vaccine consultation in 15 years on the 23rd and 24th of March, 2015 in Geneva, Switzerland. The meeting's primary objective was to provide guidance on clinical endpoints and development pathways for vaccine trials with a focus on considerations of low- and middle-income countries. Meeting participants reached consensus on candidate case definitions for RSV disease, considerations for clinical efficacy endpoints, and the clinical development pathway for active and passive immunization trials in maternal and pediatric populations. The strategic focus of this meeting was on the development of high quality, safe and efficacious RSV preventive interventions for global use and included: (1) maternal/passive immunization to prevent RSV disease in infants less than 6 months; (2) pediatric immunization to prevent RSV disease in infants and young children once protection afforded by maternal immunization wanes

    Ensuring HIV Data Availability, Transparency and Integrity in the MENA Region Comment on “Improving the Quality and Quantity of HIV Data in the Middle East and North Africa: Key Challenges and Ways Forward”

    Get PDF
    In this commentary, we elaborate on the main points that Karamouzian and colleagues have made about HIV data scarcity in Middle Eastern and North African (MENA) countries. Without accessible and reliable data, no epidemic can be managed effectively or efficiently. Clearly, increased investments are needed to bolster capabilities to capture and interpret HIV surveillance data. We believe that this enhanced capacity can be achieved, in part, by leveraging and repurposing existing data platforms, technologies and patient cohorts. An immediate modest investment that capitalizes on available infrastructure can generate data on the HIV burden and spread that can be persuasive for MENA policy-makers to intensify efforts to track and contain the growing HIV epidemic in this region. A focus on key populations will yield the most valuable data, including among men who have sex with men (MSM), transgender women and men, persons who inject drugs (PWIDs), female partners of high risk men and female sex worker

    Respiratory syncytial virus vaccine research and development: World Health Organization technological roadmap and preferred product characteristics.

    Get PDF
    The respiratory syncytial virus causes a considerable respiratory disease burden globally, most markedly in young infants, in low and middle income countries. A diverse product pipeline illustrates the recent intensification of research and development activities for vaccines and monoclonal antibodies against RSV. With the aim to ensure that product development activities are directed to address the public health needs, the World Health Organization has developed a research and development technical roadmap and articulated product characteristics preferences

    Efficacy of an inactivated Zika vaccine against virus infection during pregnancy in mice and marmosets.

    Get PDF
    Zika virus (ZIKV) is a mosquito-borne arbovirus that can cause severe congenital birth defects. The utmost goal of ZIKV vaccines is to prevent both maternal-fetal infection and congenital Zika syndrome. A Zika purified inactivated virus (ZPIV) was previously shown to be protective in non-pregnant mice and rhesus macaques. In this study, we further examined the efficacy of ZPIV against ZIKV infection during pregnancy in immunocompetent C57BL6 mice and common marmoset monkeys (Callithrix jacchus). We showed that, in C57BL/6 mice, ZPIV significantly reduced ZIKV-induced fetal malformations. Protection of fetuses was positively correlated with virus-neutralizing antibody levels. In marmosets, the vaccine prevented vertical transmission of ZIKV and elicited neutralizing antibodies that remained above a previously determined threshold of protection for up to 18 months. These proof-of-concept studies demonstrate ZPIVs protective efficacy is both potent and durable and has the potential to prevent the harmful consequence of ZIKV infection during pregnancy

    Safety, tolerability, and immunogenicity of the chimpanzee adenovirus type 3-vectored Marburg virus (cAd3-Marburg) vaccine in healthy adults in the USA: a first-in-human, phase 1, open-label, dose-escalation trial

    Get PDF
    Background: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. // Methods: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18–50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. // Findings: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209–846] in the 1 × 1010 pu group and 545 [276–1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13–119] in the 1 ×1010 pu group and 27 [95–156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. // Interpretation: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. // Funding: National Institutes of Health

    Convalescent human IgG, but not IgM, from COVID-19 survivors confers dose-dependent protection against SARS-CoV-2 replication and disease in hamsters

    Get PDF
    IntroductionAntibody therapeutic strategies have served an important role during the COVID-19 pandemic, even as their effectiveness has waned with the emergence of escape variants. Here we sought to determine the concentration of convalescent immunoglobulin required to protect against disease from SARS-CoV-2 in a Syrian golden hamster model.MethodsTotal IgG and IgM were isolated from plasma of SARS-CoV-2 convalescent donors. Dose titrations of IgG and IgM were infused into hamsters 1 day prior to challenge with SARS-CoV-2 Wuhan-1.ResultsThe IgM preparation was found to have ~25-fold greater neutralization potency than IgG. IgG infusion protected hamsters from disease in a dose-dependent manner, with detectable serum neutralizing titers correlating with protection. Despite a higher in vitro neutralizing potency, IgM failed to protect against disease when transferred into hamsters.DiscussionThis study adds to the growing body of literature that demonstrates neutralizing IgG antibodies are important for protection from SARS-CoV-2 disease, and confirms that polyclonal IgG in sera can be an effective preventative strategy if the neutralizing titers are sufficiently high. In the context of new variants, against which existing vaccines or monoclonal antibodies have reduced efficacy, sera from individuals who have recovered from infection with the emerging variant may potentially remain an efficacious tool

    International Health: Purpose, Value, Challenges

    Full text link

    MERS-CoV vaccine candidates in development: The current landscape

    Get PDF
    AbstractMiddle East respiratory syndrome coronavirus (MERS-CoV), an emerging infectious disease of growing global importance, has caused severe acute respiratory disease in more than 1600 people, resulting in more than 600 deaths. The high case fatality rate, growing geographic distribution and vaguely defined epidemiology of MERS-CoV have created an urgent need for effective public health countermeasures, paramount of which is an effective means of prevention through a vaccine or antibody prophylaxis. Despite the relatively few number of cases to-date, research and development of MERS-CoV vaccine candidates is advancing quickly. This review surveys the landscape of these efforts across multiple groups in academia, government and industry
    corecore