277 research outputs found

    Capturing a Flavivirus Pre-Fusion Intermediate

    Get PDF
    During cell entry of flaviviruses, low endosomal pH triggers the rearrangement of the viral surface glycoproteins to a fusion-active state that allows the release of the infectious RNA into the cytoplasm. In this work, West Nile virus was complexed with Fab fragments of the neutralizing mAb E16 and was subsequently exposed to low pH, trapping the virions in a pre-fusion intermediate state. The structure of the complex was studied by cryo-electron microscopy and provides the first structural glimpse of a flavivirus fusion intermediate near physiological conditions. A radial expansion of the outer protein layer of the virion was observed compared to the structure at pH 8. The resulting ∼60 Å-wide shell of low density between lipid bilayer and outer protein layer is likely traversed by the stem region of the E glycoprotein. By using antibody fragments, we have captured a structural intermediate of a virus that likely occurs during cell entry. The trapping of structural transition states by antibody fragments will be applicable for other processes in the flavivirus life cycle and delineating other cellular events that involve conformational rearrangements

    Crystal Structure of Glycoprotein C from a Hantavirus in the Post-fusion Conformation.

    Get PDF
    Hantaviruses are important emerging human pathogens and are the causative agents of serious diseases in humans with high mortality rates. Like other members in the Bunyaviridae family their M segment encodes two glycoproteins, GN and GC, which are responsible for the early events of infection. Hantaviruses deliver their tripartite genome into the cytoplasm by fusion of the viral and endosomal membranes in response to the reduced pH of the endosome. Unlike phleboviruses (e.g. Rift valley fever virus), that have an icosahedral glycoprotein envelope, hantaviruses display a pleomorphic virion morphology as GN and GC assemble into spikes with apparent four-fold symmetry organized in a grid-like pattern on the viral membrane. Here we present the crystal structure of glycoprotein C (GC) from Puumala virus (PUUV), a representative member of the Hantavirus genus. The crystal structure shows GC as the membrane fusion effector of PUUV and it presents a class II membrane fusion protein fold. Furthermore, GC was crystallized in its post-fusion trimeric conformation that until now had been observed only in Flavi- and Togaviridae family members. The PUUV GC structure together with our functional data provides intriguing evolutionary and mechanistic insights into class II membrane fusion proteins and reveals new targets for membrane fusion inhibitors against these important pathogens.Work with mutant Gc proteins was funded by FONDECYT 1140050 and Basal PFB-16 grants from CONICYT (to NDT), YM was supported by a Senior Research Fellowship from the Wellcome Trust, grant no. 101908/Z/13/Z,This is the final version of the article. It first appeared from PLOS via https://doi.org/10.1371/journal.ppat.100594

    Small-Molecule Inhibitors of Dengue-Virus Entry

    Get PDF
    Flavivirus envelope protein (E) mediates membrane fusion and viral entry from endosomes. A low-pH induced, dimer-to-trimer rearrangement and reconfiguration of the membrane-proximal “stem" of the E ectodomain draw together the viral and cellular membranes. We found stem-derived peptides from dengue virus (DV) bind stem-less E trimer and mimic the stem-reconfiguration step in the fusion pathway. We adapted this experiment as a high-throughput screen for small molecules that block peptide binding and thus may inhibit viral entry. A compound identified in this screen, 1662G07, and a number of its analogs reversibly inhibit DV infectivity. They do so by binding the prefusion, dimeric E on the virion surface, before adsorption to a cell. They also block viral fusion with liposomes. Structure-activity relationship studies have led to analogs with submicromolar IC90s against DV2, and certain analogs are active against DV serotypes 1,2, and 4. The compounds do not inhibit the closely related Kunjin virus. We propose that they bind in a previously identified, E-protein pocket, exposed on the virion surface and although this pocket is closed in the postfusion trimer, its mouth is fully accessible. Examination of the E-trimer coordinates (PDB 1OK8) shows that conformational fluctuations around the hinge could open the pocket without dissociating the trimer or otherwise generating molecular collisions. We propose that compounds such as 1662G07 trap the sE trimer in a “pocket-open" state, which has lost affinity for the stem peptide and cannot support the final “zipping up" of the stem

    Structural Optimization and De Novo Design of Dengue Virus Entry Inhibitory Peptides

    Get PDF
    Viral fusogenic envelope proteins are important targets for the development of inhibitors of viral entry. We report an approach for the computational design of peptide inhibitors of the dengue 2 virus (DENV-2) envelope (E) protein using high-resolution structural data from a pre-entry dimeric form of the protein. By using predictive strategies together with computational optimization of binding “pseudoenergies”, we were able to design multiple peptide sequences that showed low micromolar viral entry inhibitory activity. The two most active peptides, DN57opt and 1OAN1, were designed to displace regions in the domain II hinge, and the first domain I/domain II beta sheet connection, respectively, and show fifty percent inhibitory concentrations of 8 and 7 µM respectively in a focus forming unit assay. The antiviral peptides were shown to interfere with virus:cell binding, interact directly with the E proteins and also cause changes to the viral surface using biolayer interferometry and cryo-electron microscopy, respectively. These peptides may be useful for characterization of intermediate states in the membrane fusion process, investigation of DENV receptor molecules, and as lead compounds for drug discovery

    Peptide Inhibitors of Dengue-Virus Entry Target a Late-Stage Fusion Intermediate

    Get PDF
    The mechanism of membrane fusion by “class II” viral fusion proteins follows a pathway that involves large-scale domain rearrangements of the envelope glycoprotein (E) and a transition from dimers to trimers. The rearrangement is believed to proceed by an outward rotation of the E ectodomain after loss of the dimer interface, followed by a reassociation into extended trimers. The ∼55-aa-residue, membrane proximal “stem” can then zip up along domain II, bringing together the transmembrane segments of the C-terminus and the fusion loops at the tip of domain II. We find that peptides derived from the stem of dengue-virus E bind stem-less E trimer, which models a conformational intermediate. In vitro assays demonstrate that these peptides specifically block viral fusion. The peptides inhibit infectivity with potency proportional to their affinity for the conformational intermediate, even when free peptide is removed from a preincubated inoculum before infecting cells. We conclude that peptides bind virions before attachment and are carried with virions into endosomes, the compartment in which acidification initiates fusion. Binding depends on particle dynamics, as there is no inhibition of infectivity if preincubation and separation are at 4°C rather than 37°C. We propose a two-step model for the mechanism of fusion inhibition. Targeting a viral entry pathway can be an effective way to block infection. Our data, which support and extend proposed mechanisms for how the E conformational change promotes membrane fusion, suggest strategies for inhibiting flavivirus entry

    Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum

    Get PDF
    Thiolase is the first enzyme catalysing the condensation of two acetyl-coenzyme A (CoA) molecules to form acetoacetyl-CoA in a dedicated pathway towards the biosynthesis of n-butanol, an important solvent and biofuel. Here we elucidate the crystal structure of Clostridium acetobutylicum thiolase (CaTHL) in its reduced/oxidized states. CaTHL, unlike those from other aerobic bacteria such as Escherichia coli and Zoogloea ramegera, is regulated by the redox-switch modulation through reversible disulfide bond formation between two catalytic cysteine residues, Cys88 and Cys378. When CaTHL is overexpressed in wild-type C. acetobutylicum, butanol production is reduced due to the disturbance of acidogenic to solventogenic shift. The CaTHLV77Q/N153Y/A286K mutant, which is not able to form disulfide bonds, exhibits higher activity than wild-type CaTHL, and enhances butanol production upon overexpression. On the basis of these results, we suggest that CaTHL functions as a key enzyme in the regulation of the main metabolism of C. acetobutylicum through a redox-switch regulatory mechanism.close0

    A Therapeutic Antibody against West Nile Virus Neutralizes Infection by Blocking Fusion within Endosomes

    Get PDF
    Defining the precise cellular mechanisms of neutralization by potently inhibitory antibodies is important for understanding how the immune system successfully limits viral infections. We recently described a potently inhibitory monoclonal antibody (MAb E16) against the envelope (E) protein of West Nile virus (WNV) that neutralizes infection even after virus has spread to the central nervous system. Herein, we define its mechanism of inhibition. E16 blocks infection primarily at a post-attachment step as antibody-opsonized WNV enters permissive cells but cannot escape from endocytic compartments. These cellular experiments suggest that E16 blocks the acid-catalyzed fusion step that is required for nucleocapsid entry into the cytoplasm. Indeed, E16 directly inhibits fusion of WNV with liposomes. Additionally, low-pH exposure of E16–WNV complexes in the absence of target membranes did not fully inactivate infectious virus, further suggesting that E16 prevents a structural transition required for fusion. Thus, a strongly neutralizing anti–WNV MAb with therapeutic potential is potently inhibitory because it blocks viral fusion and thereby promotes clearance by delivering virus to the lysosome for destruction

    Combinatorial Computational Approaches to Identify Tetracycline Derivatives as Flavivirus Inhibitors

    Get PDF
    Limited structural information of drug targets, cellular toxicity possessed by lead compounds, and large amounts of potential leads are the major issues facing the design-oriented approach of discovering new leads. In an attempt to tackle these issues, we have developed a process of virtual screening based on the observation that conformational rearrangements of the dengue virus envelope protein are essential for the mediation of viral entry into host cells via membrane fusion. Screening was based solely on the structural information of the Dengue virus envelope protein and was focused on a target site that is presumably important for the conformational rearrangements necessary for viral entry. To circumvent the issue of lead compound toxicity, we performed screening based on molecular docking using structural databases of medical compounds. To enhance the identification of hits, we further categorized and selected candidates according to their novel structural characteristics. Finally, the selected candidates were subjected to a biological validation assay to assess inhibition of Dengue virus propagation in mammalian host cells using a plaque formation assay. Among the 10 compounds examined, rolitetracycline and doxycycline significantly inhibited plaque formation, demonstrating their inhibitory effect on dengue virus propagation. Both compounds were tetracycline derivatives with IC(50)s estimated to be 67.1 µM and 55.6 µM, respectively. Their docked conformations displayed common hydrophobic interactions with critical residues that affected membrane fusion during viral entry. These interactions will therefore position the tetracyclic ring moieties of both inhibitors to bind firmly to the target and, subsequently, disrupt conformational rearrangement and block viral entry. This process can be applied to other drug targets in which conformational rearrangement is critical to function
    corecore