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Abstract 

Dominant mutations in the MORC2 gene have recently been shown to 

cause axonal Charcot-Marie-Tooth (CMT) disease, but the cellular function of 

MORC2 is poorly understood. Here, through a genome-wide CRISPR/Cas9-

mediated forward genetic screen, we identify MORC2 as an essential gene 

required for epigenetic silencing by the HUSH complex. HUSH recruits MORC2 

to target sites in heterochromatin. We exploit a new method – Differential Viral 

Accessibility (DIVA) – to show that loss of MORC2 results in chromatin 

decompaction at these target loci, which is concomitant with a loss of H3K9me3 

deposition and transcriptional derepression. The ATPase activity of MORC2 is 

critical for HUSH-mediated silencing, and the most common mutation affecting 

the ATPase domain found in CMT patients (R252W) hyper-activates HUSH-

mediated repression in neuronal cells. These data define a critical role for 

MORC2 in epigenetic silencing by the HUSH complex and provide a mechanistic 

basis underpinning the role of MORC2 mutations in CMT disease. 
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Introduction 

Chromatin has historically been considered as existing in one of two distinct 

states: euchromatin or heterochromatin. Euchromatin is generally considered to be 

gene-rich, transcriptionally-active and associated with an open and accessible 

conformation, whereas heterochromatin is comparatively gene-poor, highly 

condensed and refractory to the transcription machinery1. Heterochromatin has 

traditionally been considered as occurring in two distinct flavors: H3K27me3-marked 

heterochromatin, which is dynamic during development2, and H3K9me3-marked 

heterochromatin, which is typically found at repeat-rich regions3.  

A remarkable property of H3K9me3-marked heterochromatin is that it can 

‘spread’ along the arm of a chromosome, which can result in the epigenetic repression 

of an active gene when it is placed in the vicinity of a heterochromatic domain4. This 

phenomenon gives rise to chromosomal position-effects, a term which refers to the 

difference in expression when an identical gene is positioned at different sites in the 

genome5,6. We previously exploited the near-haploid KBM7 cell line7,8 to identify genes 

required for position-effect variegation in human cells9. By isolating a population of 

cells that displayed epigenetic repression of an integrated green fluorescent protein 

(GFP) reporter construct and screening for mutants in which this repression was 

alleviated, we identified four genes that were essential for transgene repression: the 

histone lysine methyltransferase SETDB110, plus the Human Silencing Hub (HUSH) 

complex subunits TASOR, MPP8 and Periphilin9. Through the chromodomain of 

MPP811, HUSH preferentially localizes to genomic loci rich in the repressive histone 

modification H3K9me3. HUSH-mediated recruitment of the methyltransferase 

SETDB1 to these sites results in the ‘writing’ of additional H3K9me3, thereby 

mediating the spreading of heterochromatin across incoming transgenes9. The HUSH 
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complex also plays a critical role in endogenous heterochromatin maintenance, as 

deletion of HUSH subunits results in decreased H3K9me3 at hundreds of genomic 

loci9 and early embryonic lethality in the mouse12,13.  

HUSH-mediated silencing is achieved through the reading and writing of 

H3K9me3. However, in order to understand how the deposition of this modification 

ultimately results in epigenetic repression, knowledge of the full complement of HUSH 

components is essential. Although our original haploid screen identified the core 

HUSH complex members and SETDB1, our recent examination of the efficacy of the 

haploid gene-trap approach suggested that such screens are unlikely to achieve 

saturation14. HUSH-mediated silencing may therefore require additional factors not 

identified by the original gene-trap screen, and, in support of this idea, we recently 

identified ATF7IP as an additional factor required for HUSH-mediated repression using 

a proteomic approach15.  

With the aim of identifying additional genes required for transgene silencing by 

the HUSH complex, we carried out a genome-wide forward genetic screen using 

CRISPR/Cas9 technology16,17. The CRISPR screen highlighted one additional gene 

as critical for HUSH-mediated repression: Microchidia CW-type zinc finger 

2 (MORC2). We show that HUSH recruits MORC2 to heterochromatic sites, where its 

ATPase activity is required to mediate transgene silencing. Loss of MORC2 results in 

chromatin decompaction at HUSH target loci, concomitant with a loss of H3K9me3 

and transcriptional derepression. Mutations in the ATPase domain of MORC2 have 

recently been implicated in Charcot-Marie-Tooth (CMT) disease, one of the most 

frequently inherited neurological disorders. We show that the most common of these 

mutations (R252W; p.Arg252Trp) results in hyper-activation of HUSH-mediated 

silencing in neuronal cells. Overall, this study identifies a critical role for MORC2 in 
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HUSH-mediated repression and provides further insight into the mechanisms 

underlying HUSH complex function in health and disease.  
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Results 

A genome-wide CRISPR screen identifies an essential role for MORC2 in HUSH-

mediated silencing. 

The rapid emergence of CRISPR/Cas9-mediated genome editing technologies 

has now allowed us to reevaluate the set of genes required for HUSH-mediated 

transgene silencing (Fig. 1a). The Cas9 nuclease was expressed in the same 

population of GFPdim KBM7 cells harboring epigenetically-repressed transgenes that 

we used previously9, and genome-wide CRISPR-mediated mutagenesis was 

performed using the GeCKO v2 sgRNA library18. Two rounds of fluorescence-

activated cell sorting (FACS) were used to enrich for GFPbright cells in which epigenetic 

repression of the GFP reporter transgene was relieved (Fig. 1b), and sgRNA 

abundance in the selected GFPbright cells versus the unselected library of mutagenized 

cells was quantified by Illumina sequencing (Fig. 1c and Supplementary Fig. 1a).  

Five genes are known to be critical for HUSH-mediated transgene repression: 

the three HUSH complex subunits TASOR, MPP8 and Periphilin9, plus the histone 

methyltransferase SETDB19 and its accessory factor ATF7IP15. Three of these 

positive controls, MPP8, SETDB1 and ATF7IP, were successfully identified by the 

CRISPR screen; TASOR and Periphilin were not significantly enriched, however, 

suggesting that the screen failed to reach saturation (Fig. 1c and Supplementary Fig. 

1a). Through individual CRISPR/Cas9-mediated gene disruption experiments, we 

assessed a potential role in transgene silencing for the other most significantly 

enriched genes (Supplementary Fig. 1b). This revealed an essential role for one 

additional gene, MORC2, a finding which we corroborated in an independent HeLa 

cell clone harboring a HUSH-repressed GFP reporter construct9 (Fig. 1d,e). With the 
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exception of SEL1L, which mediates the degradation of the GFP reporter at the protein 

level14, we were unable to validate any of the additional candidate genes 

(Supplementary Fig. 1b). Therefore, the genome-wide CRISPR screen identified a 

single novel gene, MORC2, as a bona fide factor required for HUSH-mediated 

transgene repression.    

 

The ATPase, CW and coiled-coil domains of MORC2 are essential for HUSH 

function. 

MORC2 is one of four MORC family proteins in humans (MORC1-4)19. Although 

little is known about their functional role in human cells, MORC family proteins have 

been implicated in epigenetic silencing in plants, worms, and mice20,21. MORC2 

encodes a protein containing a GHKL-type ATPase, comprised of the N-terminal 

ATPase domain plus an associated ribosomal protein S5-like domain, followed by two 

putative histone binding modules: a CW-type zinc finger and a chromo-like domain 

(Fig. 2a). To assess which of these domains were required for the function of MORC2 

in HUSH-mediated repression, we performed a series of genetic complementation 

experiments in a MORC2 knockout HeLa clone (Fig. 2b-d and Supplementary Table 

1). While exogenous expression of full-length MORC2 or a MORC2 mutant lacking the 

chromo-like domain resulted in re-repression of the GFP reporter, deletion of both 

ATPase domains, the S5-like domain alone or the CW-type zinc finger abolished 

MORC2 activity (Fig. 2e,f). Sequence analysis also predicted the presence of three 

coiled-coil domains (denoted CC1, CC2 and CC3) (Fig. 2a); deletion of any one of 

these also abrogated MORC2 function (Fig. 2e,f). Thus, the MORC2 ATPase domain, 

CW-type zinc finger and coiled-coil domains, but not the chromo-like domain, 
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appeared to be critical for HUSH-mediated epigenetic repression, with the caveat that 

although these mutant proteins are expressed in cells (Fig. 2f), we are unable to prove 

that they are correctly folded. 

 

MORC2 interacts with the HUSH complex. 

The genetic association between MORC2 and the HUSH complex suggested 

that MORC2 might physically interact with HUSH subunits. We were readily able to 

detect an interaction between a V5 epitope-tagged MORC2 immunoprecipitated from 

HeLa nuclei and the HUSH subunits TASOR and MPP8 (Fig. 3a). Repeating this 

assay with a series of V5-tagged N- and C-terminal truncation mutants of MORC2 

(Supplementary Table 1) suggested that the second coiled-coil domain (CC2) of 

MORC2 (residues 548-603) was likely to be essential for this interaction 

(Supplementary Fig. 2a-c). The interaction between MORC2 and HUSH subunits also 

occurred in SETDB1 knockout cells (Supplementary Fig. 2d) and deletion of MORC2 

did not prevent the interaction between SETDB1 and HUSH (Supplementary Fig. 2e), 

suggesting independent recruitment of these two potential effector proteins by the 

HUSH complex. However, like SETDB1, MORC2 did not appear to be a constitutive 

member of the HUSH complex, as, unlike loss of TASOR, MPP8 or Periphilin9, loss of 

MORC2 did not affect the protein levels of HUSH subunits (Supplementary Fig. 2f) nor 

their localization to chromatin (Supplementary Fig. 2g). 

 

The HUSH complex recruits MORC2 to heterochromatic loci. 
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To ascertain the physiological relevance of the association between MORC2 

and the HUSH complex, we performed chromatin immunoprecipitation followed by 

deep sequencing (ChIP-seq). Immunoprecipitation of a V5-tagged MORC2 construct 

expressed in MORC2 knockout cells revealed two modes of MORC2 binding to 

chromatin (Fig. 3b): a broad distribution across the bodies of genes located in 

heterochromatin marked by H3K9me3 (Fig. 3c,d and Supplementary Fig. 3a) and a 

series of discrete peaks at transcriptional start sites (TSSs) (Fig. 3e,f and 

Supplementary Fig. 3b). Comparing the occupancy of MORC2 with that of 

endogenous TASOR revealed significant overlap between the heterochromatic 

regions bound by MORC2 and those occupied by the HUSH complex (Fig. 3c,d). 

Indeed, MORC2 localization to these heterochromatic sites was dependent on the 

HUSH complex, as MORC2 occupancy was lost in cells lacking all three HUSH 

subunits (Fig. 3c,d). Thus, these datasets revealed HUSH-dependent recruitment of 

MORC2 to heterochromatic loci marked by H3K9me3. The functional relevance of 

MORC2 recruitment to TSSs remains unclear, but this was not dependent on the 

HUSH complex (Fig. 3e,f) and did not involve H3K4me3 recognition by the CW domain 

of MORC222 (Supplementary Fig. 4), as has been demonstrated for the CW domains 

of MORC3 and MORC423,24.  

In further support of an association between HUSH and MORC2, we also found 

that the HUSH complex regulated the expression of MORC2. Knockout of HUSH 

subunits or SETDB1 resulted in an increase in MORC2 expression as measured by 

quantitative reverse transcription PCR (qRT-PCR) (Supplementary Fig. 2h). In support 

of the idea that this represented a direct feedback loop, our ChIP-seq data 

demonstrated both TASOR occupancy and HUSH-dependent recruitment of MORC2 

to an H3K9me3-rich site in the MORC2 promoter (Supplementary Fig. 2i).  
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MORC2 loss results in chromatin decompaction at HUSH loci. 

The catalytic activity of the MORC2 ATPase domain allows MORC2 to remodel 

nucleosomal templates in vitro25. Therefore, we hypothesized that ATP hydrolysis by 

MORC2 might be required to alter chromatin architecture at HUSH target sites in vivo. 

To directly test the functional requirement for MORC2 ATPase activity in HUSH-

mediated silencing, we carried out further genetic complementation assays in MORC2 

knockout HeLa cells (Fig. 4a). While exogenous expression of wild-type MORC2 

restored HUSH function and resulted in the re-repression of the GFP reporter 

construct, MORC2 variants harboring point mutations in the critical residues of the 

ATPase domain required for ATP binding (N39A) or hydrolysis (D68A)25 were non-

functional (Fig. 4a,b). 

Should the ATPase activity of MORC2 be required to mediate chromatin 

compaction during HUSH-mediated repression in vivo, disruption of MORC2 should 

result in a more open chromatin structure at sites of HUSH activity. ATAC-seq is 

currently a leading method to assay changes in chromatin accessibility in vivo26, but 

our attempts to exploit this technology to examine potential chromatin decompaction 

in MORC2 knockout HeLa cells were hampered by a large proportion of contaminating 

mitochondrial reads27 and insufficient coverage of the heterochromatic portions of the 

genome at which HUSH functions (Supplementary Fig. 5a,b). We therefore developed 

a new approach, Differential Viral Accessibility (DIVA), to examine changes in 

chromatin accessibility in vivo. DIVA is conceptually similar to ATAC-seq, but, rather 

than identifying transposon integration sites to probe accessible chromatin, DIVA 

maps the integration sites of exogenous lentiviruses (Fig. 4c and Supplementary Fig. 
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5c). In contrast to the Tn5 transposase which preferentially integrates near 

transcriptional start sites, HIV-1-derived lentiviral vectors preferentially target gene 

bodies28.  

We used DIVA to compare chromatin accessibility in wild-type and MORC2-null 

HeLa cells. Approximately 20 million independent viral integration sites were mapped 

in each cell type, and the two datasets were then compared to identify loci exhibiting 

significantly greater numbers of integrations in the MORC2 knockout cells compared 

to the parental wild-type cells (Fig. 4c and Supplementary Fig. 5d-g). Considering the 

genome as a series of 10 kb windows, we identified 278 loci exhibiting chromatin 

decompaction upon knockout of MORC2 (Fig. 4d and Supplementary Table 2). A large 

proportion of these loci were heterochromatic sites at which TASOR or MORC2 

occupancy was observed by ChIP-seq (Fig. 4e). Notably, many of these loci contained 

zinc finger (ZNF) genes (Fig. 4f), and, on the ZNF-rich chromosome 19, for example, 

a striking concordance was observed between the positions of ZNF gene clusters and 

the loci exhibiting decompaction in MORC2 knockout cells (Fig. 4g). Employing an 

orthogonal technique based on micrococcal nuclease sensitivity, we validated 

increased chromatin accessibility in MORC2 knockout cells at four example ZNF loci 

(Supplementary Fig. 6). 

 

MORC2 knockout results in chromatin decompaction, decreased H3K9me3 and 

transcriptional derepression. 

We also wanted to assess the relationship between MORC2-dependent 

changes in chromatin accessibility and H3K9me3 deposition. We found that loss of 

MORC2 in HeLa cells resulted in a decrease in H3K9me3 at the vast majority of loci 
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exhibiting chromatin decompaction upon MORC2 knockout (Fig. 5a,b and 

Supplementary Fig. 7a), supporting the idea that chromatin decompaction also results 

in a concomitant decrease in H3K9me3 levels. Consistent with the functional 

association between MORC2 and the HUSH complex, 906 of the 918 loci (99%) that 

we previously found to have lost H3K9me3 upon deletion of either of the three HUSH 

subunits9 also showed decreased H3K9me3 levels in MORC2 knockout cells (Fig. 5c). 

At the vast majority of these sites, H3K9me3 deposition was dependent on the HUSH-

associated methyltransferase SETDB1 (Supplementary Fig. 7a,b).  

Finally we considered the effect of chromatin decompaction at these sites on 

gene expression. In addition to a decrease in H3K9me3, we found that decompaction 

following knockout of MORC2 resulted in an increase in the mean expression level of 

the 89 genes residing within these loci (Fig. 5d), with 42 genes (47%) displaying >1.2-

fold increase in expression. Furthermore, of all 190 genes significantly upregulated 

upon MORC2 knockout (Fig. 5e), ZNF genes represented the most significantly 

enriched functional group (Fig. 5f). Consistent with a repressive role for MORC2, the 

majority of the upregulated genes were direct targets of TASOR and/or MORC2 as 

assessed by ChIP-seq (Supplementary Fig. 7c,d), and many also exhibited a loss of 

H3K9me3 and decompaction upon MORC2 knockout (Supplementary Fig. 7e). In 

contrast, ablation of MORC2 did not result in a global transcriptional change across 

genes exhibiting HUSH-independent MORC2 occupancy at their TSSs 

(Supplementary Fig. 7f). Altogether, these data support a model whereby loss of 

MORC2 results in chromatin decompaction, a loss of SETDB1-mediated H3K9me3 

deposition and transcriptional derepression at HUSH target sites.  
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 The R252W CMT mutation in MORC2 hyper-activates HUSH silencing.  

Five independent studies have recently reported that dominant mutations in the 

ATPase domain of MORC2 can cause axonal Charcot-Marie-Tooth (CMT) disease 

(Fig. 6a)29–33. We focused on understanding the functional impact of the most 

prevalent mutation, an arginine to tryptophan substitution at residue 252 (R252W or 

p.Arg252Trp in Uniprot: Q9Y6X9-1), which results in a severe axonal form of CMT230. 

This is the identical mutation to the reported R190W variant of MORC229,31,32, which 

refers to a putative alternative isoform of the protein (Uniprot: Q9Y6X9-2) that lacks 

62 amino acids at the N-terminus.  

Consistent with the genetic data which suggests a gain-of-function mechanism 

underlying the pathogenicity of the mutations, MORC2 harboring the R252W mutation 

did encode a functional protein capable of restoring HUSH-mediated transgene 

repression in MORC2 knockout HeLa cells (Fig. 6b,c). Moreover, the R252W mutant 

consistently outperformed the wild-type protein, resulting in enhanced re-repression 

of the GFP reporter. Indeed, despite being expressed at a lower level that the wild-

type protein, the R252W mutation both accelerated the rate of reporter re-repression 

and enhanced the overall degree of reporter repression observed (Fig. 6d and 

Supplementary Fig. 8). To verify that this effect was also observed at endogenous 

genes targeted by HUSH and MORC2, we performed RNA-seq analysis to compare 

the transcriptome of MORC2 knockout HeLa cells reconstituted with wild-type MORC2 

versus the R252W mutant (Supplementary Fig. 9). In agreement with the results from 

the reporter assays, we found that the R252W mutation resulted in the hyper-

repression of MORC2 target genes (Supplementary Fig. 9).  
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The mutant MORC2 proteins exert a dominant effect in CMT patients, driving 

the disease phenotype when co-expressed with a wild-type MORC2 allele. Therefore, 

we considered whether the R252W mutant MORC2 could hyper-repress HUSH target 

genes when expressed alongside the wild-type protein in MORC2-sufficient cells. 

First, we found that overexpression of R252W MORC2, but not wild-type, resulted in 

hyper-repression of a HUSH-responsive “GFPdim” HeLa reporter clone that exhibited 

weak expression at steady state (Fig. 6e). We then considered whether this effect 

would also occur at endogenous genes in neuronal cells. Transcriptome analysis of 

SK-N-SH neuroblastoma cells by RNA-seq (Fig. 6f) showed that overexpression of 

either wild-type or R252W MORC2 enhanced repression at example HUSH target 

sites (Fig. 6g); however, this effect was substantially greater with the R252W mutant, 

despite it being expressed at ~7.5-fold lower levels than the wild-type protein (Fig. 6h). 

Indeed, of the 91 genes significantly over-repressed by R252W compared to the wild-

type protein, 31 (34%) were ZNF genes marked by H3K9me3 (Fig. 6i). Overall these 

data suggested that the R252W mutation in MORC2 can hyper-activate HUSH-

mediated epigenetic repression, resulting in over-repression of HUSH target genes in 

neuronal cells.     
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Discussion 

The recently-identified HUSH complex is an important regulator of mammalian 

heterochromatin that is critical for silencing of newly-integrated retroviruses9 and for 

normal embryonic development12,13. Here, through a genome-wide CRISPR/Cas9-

mediated forward genetic screen, we have identified MORC2 as an additional 

accessory member of the HUSH complex. MORC2 is recruited by the HUSH complex 

to heterochromatic loci, where its ATPase activity is essential for HUSH-mediated 

silencing. Exploiting a new method, Differential Viral Accessibility (DIVA), we found 

that loss of MORC2 resulted in chromatin decompaction at these sites, accompanied 

by a decrease in H3K9me3 levels and transcriptional derepression. Furthermore, we 

show that the most commonly identified Charcot-Marie-Tooth disease mutation in the 

MORC2 ATPase domain, R252W, results in hyper-activation of HUSH-mediated 

repression at heterochromatic loci.   

  Previously we identified the HUSH complex through a gene-trap mutagenesis 

screen in the near-haploid KBM7 human cell line9. The rapid emergence of 

CRISPR/Cas9-mediated genome editing technologies has now allowed us to 

reexamine the complement of genes required for transgene repression, using a 

genome-wide library of sgRNAs to create the starting pool of mutant cells. The results 

of the two screens proved to be complementary, as, although the CRISPR screen 

failed to identify two of the core HUSH complex subunits detected by the original 

haploid gene-trap screen, it did reveal an essential role for one additional gene, 

MORC2 (Fig. 1). The CRISPR screening technique therefore represents a powerful 

alternative to the haploid gene-trap approach14, and, with considerable interest in the 

design of more efficacious guide RNA libraries34–36, it is likely that the accuracy of such 

genome-wide CRISPR screens will continue to improve.   
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In humans, the MORC protein family comprises four proteins (MORC1-4) plus 

the more divergent SMCHD119. MORC1 represses transposable elements in the male 

mouse germ line21 and MORC2 has been implicated in the response to DNA 

damage25, but the molecular function of the mammalian MORC family members 

remains largely uncharacterized. All MORC proteins share a similar domain 

architecture, comprising an N-terminal GHKL-type ATPase domain and a CW-type 

zinc finger, but their functions are likely to be distinct. For example, the inability of the 

CW-type zinc fingers of MORC1 and MORC2 to recognize methylated H3K4 suggests 

a different mode of recruitment to chromatin compared to MORC3 and MORC422, 

whilst it is only mutations in MORC2 that are associated with CMT disease29–33. A key 

challenge, therefore, is to elucidate how MORC proteins are recruited to chromatin 

and to determine their effect on nucleosomal architecture at target sites. Here we 

demonstrate that HUSH regulates the localization of MORC2 to target sites on 

chromatin, and that the ATPase activity of MORC2 plays a critical role in altering 

chromatin architecture at these sites during HUSH-mediated silencing.  

The ATPase activity of MORC2 is required to drive nucleosome remodeling in 

vitro25, and was essential for transgene silencing by the HUSH complex in vivo (Fig. 

4a,b). Therefore, it followed that the remodeling activity of MORC2 might be required 

to alter chromatin architecture at these sites to promote gene silencing. Although 

ATAC-seq has been widely used to study the degree of chromatin “opening” at 

transcriptional start sites, we found it unsuitable to probe decompaction of 

heterochromatic regions due to the low proportion of transposon integrations into such 

sites. Instead of mapping transposon integration sites, DIVA examines the integration 

preferences of exogenous lentiviruses to probe accessible chromatin. Lentiviruses 

preferentially target the bodies of genes28, and indeed our data show that this 
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approach affords far greater coverage of the heterochromatic sites at which the HUSH 

complex functions. We therefore anticipate that DIVA may prove a useful approach to 

interrogate changes in heterochromatin structure in vivo in other experimental 

systems. However DIVA may not be suitable for comparisons between non-isogenic 

cell lines, where it may be impossible to control for differences in the abundance or 

activity of other factors influencing viral integration preferences. Furthermore DIVA 

relies on high-efficiency transduction with lentiviral vectors, which may not be 

achievable in all cell types, and, compared to the simplicity of ATAC-seq, requires a 

more involved protocol for the preparation of sequencing libraries to map virus-

genome junctions. 

Our application of DIVA to compare wild-type and MORC2-null cells revealed 

that loss of MORC2 resulted in chromatin decompaction at HUSH target sites. The 

repetitive ZNF gene family represented the most enriched functional group. Many of 

the ZNF genes are located in clusters covered by high levels of H3K9me3, which also 

coats other repetitive regions of the genome, including centromeres and tandem 

repeats. While we did not observe decompaction of these additional repetitive regions 

upon MORC2 disruption, we do not know how well DIVA will capture these other sites 

of repressive heterochromatin. Further experiments will be needed to address the 

specific physiological role of MORC2 with HUSH and SETDB1 in maintaining 

H3K9me3 across the body of ZNF genes.  

 The DIVA results suggest that HUSH target loci normally adopt a compact 

chromatin state which needs to be reversed to alleviate repression. Although 

repressed genomic regions have canonically been associated with dense chromatin 

domains that are refractory to the transcription machinery, there may be distinct 

mechanisms through which such nucleosome compaction is achieved. In particular, 
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the specific requirement for ATP hydrolysis to drive compaction during HUSH-

mediated silencing seems to be distinct from other key repressive complexes. For 

example, ATP hydrolysis has not been implicated in heterochromatin formation 

through the SUV39H1-HP1 axis, another major route to H3K9me3-mediated silencing. 

Compact heterochromatic structures have also been associated with Polycomb-driven 

repression37, but again this compaction function does not seem to require an ATP 

motor and has instead been attributed to a disordered region rich in basic amino acids 

in PRC138. However, ATP-dependent chromatin remodelers have previously been 

shown to play an indirect role in transcriptional repression by establishing the 

appropriate nucleosome spacing for subsequent silencing39. For example, the 

Nucleosome Remodeling Deacetylase (NuRD) complex utilizes the chromatin 

remodeling function of its CHD subunits to space adjacent nucleosomes, thereby 

making the histone tails accessible for deacetylation40. Therefore, one possibility is 

that MORC2 is recruited by HUSH to position nucleosomes in a manner that renders 

the chromatin permissive to transcriptional repression. 

 The mechanism through which dominant mutations in MORC2 cause axonal 

CMT disease29–33 and severe spinal muscular atrophy (SMA)-like disease41 is 

unknown. Given that these patients retain one functional wild-type MORC2 allele, the 

disease phenotype is unlikely to result from loss-of-function of the mutant protein. Our 

data suggest that a gain-of-function effect underlies the phenotype of the MORC2 

R252W CMT mutation, which results in hyper-activation of HUSH complex function at 

both exogenous transgenes and endogenous genomic loci. Indeed, the closely-related 

MORC1 protein – which represses transposable elements in the male germ line21 – 

contains a tryptophan residue at the equivalent position. 
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Further work will be required to elucidate the biochemical basis underlying the 

hyper-activation phenotype resulting from the MORC2 R252W mutation. Structural 

insight into the organization of the MORC2 ATPase domain would be invaluable in 

assessing the impact of the R252W mutation, and may also guide the rational design 

of small molecule inhibitors. Inhibition of Hsp90, the prototypical member of the GHKL-

family of ATPases, has been successfully achieved using the small molecules 

geldanamycin and radicicol42,43, and the latter is also effective against the distantly-

related GHKL-family member SMCHD144. Overall, these data suggest that inhibition 

of the ATPase domain of MORC2 provides an attractive target for the therapeutic 

modulation of HUSH complex function.  
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Figure Legends 

Figure 1. A genome-wide CRISPR/Cas9-mediated forward genetic screen 

identifies an essential role for MORC2 in transgene silencing by the HUSH 

complex. (a,b) A genome-wide CRISPR screen to identify genes required for 

transgene silencing. Cas9 was expressed in a population of GFPdim KBM7 cells 

harboring epigenetically repressed transgenes, and genome-wide mutagenesis 

carried out using the GeCKO v2 sgRNA library (a). Mutant GFPbright cells containing 

gene disruption events that prevented reporter repression were isolated through two 

sequential rounds of FACS (b). Black boxes indicate approximate sorting gates. (c) 

Bubble plot illustrating the hits from the screen. All genes targeted by sgRNAs are 

arranged alphabetically by gene name on the x-axis, with their statistical significance 

as determined by the RSA algorithm plotted on the y-axis. Bubble size is proportional 

to the number of active sgRNAs for each gene. Colored bubbles represent validated 

hits; the HUSH complex subunits TASOR and Periphilin (black) did not reach statistical 

significance, while SEL1L (orange) is involved in the degradation of the GFP fusion 

protein14. A fully annotated plot is provided in Fig. S1. (d,e) MORC2 is required for 

transgene silencing by the HUSH complex in HeLa cells. CRISPR/Cas9-mediated 

disruption of MORC2 results in derepression of a HUSH-repressed reporter as 

measured by flow cytometry (d) or immunofluorescence microscopy (e). 
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Figure 2. The ATPase, CW and coiled-coil domains of MORC2 are required for 

HUSH complex function. (a) Schematic representation of the domain structure of 

MORC2. (CC, predicted coiled-coil; S5, ribosomal S5-like domain; CW, CW-type zinc 

finger; CD, chromo-like domain) (b-d) Generation and validation of MORC2 knockout 

HeLa cells. A HeLa reporter clone harboring a HUSH-repressed GFP reporter was 

transfected with a pool of plasmids to express Cas9 and three sgRNAs targeting 

MORC2. Cells in which the MORC2 gene was disrupted became GFP+ owing to 

derepression the GFP reporter and were isolated using FACS (b). The sorted GFP+ 

population no longer expressed MORC2 protein as assessed by immunoblot (c). 

MORC2 knockout single cell clones were then isolated from the GFP+ sorted 

population (d). (e,f) Assessing the domains required for MORC2 function through the 

genetic complementation of MORC2 knockout cells. Expression of wild-type MORC2 

or a MORC2 mutant lacking the chromodomain (ΔCD) in MORC2 knockout cells 

resulted in re-repression of the GFP reporter transgene. In contrast, MORC2 variants 

lacking the ATPase, S5, CW or coiled-coil domains were non-functional and did not 

rescue HUSH-mediated repression (e). Immunoblot validation of expression of the 

MORC2 deletion mutants (f). All MORC2 variants were expressed with an N-terminal 

V5 epitope tag followed by an exogenous SV40 nuclear localization signal; detailed 

sequence information on the composition of the mutants is provided in Supplementary 

Table 1. 
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Figure 3. The HUSH complex recruits MORC2 to heterochromatic target sites. 

(a) MORC2 interacts with the HUSH complex. TASOR and MPP8 co-

immunoprecipitate with V5-tagged MORC2 expressed in HeLa cells. (b) Summary of 

MORC2 genome occupancy as measured by ChIP-seq. In total 4500 peaks of V5-

MORC2 occupancy were detected, the majority of which fell into two categories: 

binding sites in heterochromatin marked by H3K9me3 (purple; left) and binding sites 

at transcriptional start sites (green; right). (c,d) The HUSH complex recruits MORC2 

to heterochromatic sites marked by H3K9me3. TASOR and MORC2 occupancy was 

observed at a range of sites marked by H3K9me3; MORC2 recruitment at these sites 

was HUSH-dependent, as V5-MORC2 occupancy was lost in cells lacking all three 

HUSH subunits9 (HUSH KO). Three example loci are shown in (c), with summary data 

across all loci shown in (d). Full ChIP-seq traces including input DNA controls are 

shown in Supplementary Fig. 3a. (e,f) MORC2 recruitment to transcriptional start sites 

is independent of the HUSH complex. MORC2 occupancy was observed at a large 

number of transcriptional start sites (TSSs) marked by the H3K4me3 histone 

modification. This was independent of the HUSH complex, as TASOR occupancy was 

not observed at these sites and MORC2 occupancy was maintained in cells lacking 

HUSH subunits. Three example loci are shown in (e), with summary data across all 

loci shown in (f). Full ChIP-seq traces including input DNA controls are shown in 

Supplementary Fig. 3b. 
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Figure 4. Loss of MORC2 results in chromatin decompaction at HUSH target 

sites. (a,b) ATP hydrolysis by MORC2 is critical for HUSH-mediated transgene 

repression. Exogenous expression of MORC2 mutants unable to bind (N39A) or 

hydrolyze (D68A) ATP failed to rescue reporter repression in MORC2 knockout cells 

(a). Immunoblot validation of expression of the MORC2 point mutants (b). (c) Overview 

of the DIVA methodology, which utilizes large-scale mapping of lentiviral integration 

sites to probe accessible chromatin. See Supplementary Figure 5c,d for more details. 

(d) Loss of MORC2 results in chromatin decompaction. Scatter plot highlighting the 

289 genomic loci (orange) which exhibit increased accessibility in MORC2 knockout 

cells. Unique lentiviral integration sites mapped to the ZNF772 locus in wild-type and 

MORC2 knockout cells are shown as an example. DIVA scores for all genomic loci 

are detailed in Supplementary Table 2. (e) The majority of loci exhibiting decompaction 

upon MORC2 knockout are direct targets of MORC2 and the HUSH complex. Of the 

278 decompacted loci, MORC2 and/or TASOR occupancy can be detected at 199 loci 

(71%). (f,g) Loci exhibiting decompaction upon MORC2 knockout are highly enriched 

for ZNF genes (f), and the decompacted regions across chromosome 19 correspond 

to sites of ZNF gene clusters (g). 
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Figure 5. Chromatin decompaction in MORC2 knockout cells is accompanied by 

a loss of H3K9me3 and transcriptional depression. (a,b) H3K9me3 is lost across 

the majority of loci exhibiting decompaction upon MORC2 knockout. Of the 278 

decompacted loci, a loss of H3K9me3 upon MORC2 knockout in HeLa cells was 

observed at 220 loci (79%), as measured by ChIP-seq (a). Summary data across all 

278 decompacted loci is shown in (b). (c) Knockout of MORC2 results in loss of 

H3K9me3 at the same sites which lose H3K9me3 upon knockout of HUSH subunits. 

Previously we identified 918 genomic loci in HeLa cells that lose H3K9me3 upon 

knockout of either TASOR, MPP8 or Periphilin (green dots)9; these same loci also 

exhibited decreased H3K9me3 levels upon knockout of MORC2. (d,e) The effect of 

knockout of MORC2 on the transcriptome. RNA-seq analysis was performed to 

compare the transcriptome of wild-type and MORC2 knockout HeLa cells. In (d), 

genes residing in loci exhibiting decompaction in MORC2 knockout cells (n = 89) are 

highlighted in red; loci exhibiting decompaction also exhibit increased expression as 

measured by RNA-seq (inset). In (e), all genes exhibiting significantly altered 

expression between wild-type and MORC2 knockout cells (n = 462; DEseq P < 0.05) 

are highlighted in orange. (f) Functional classification of the genes upregulated in 

MORC2 knockout cells using the DAVID functional annotation tool. Genes upregulated 

upon MORC2 knockout are highly enriched for ZNF genes. 
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Figure 6. The R252W mutation in MORC2 associated with Charcot-Marie-Tooth 

disease hyper-activates HUSH-mediated epigenetic repression. (a) Schematic 

representation of the mutations associated with CMT affecting the ATPase domain of 

MORC2. (b,c) Assessing the effect of the R252W CMT mutation on MORC2 function 

through genetic complementation of MORC2 knockout cells. The R252W CMT mutant 

MORC2 is functional, restoring HUSH-mediated transgene silencing when expressed 

in MORC2 knockout cells (b). Immunoblot validation of expression of wild-type or 

R252W mutant MORC2 (c). (d,e) The R252W CMT mutation in MORC2 hyper-

activates HUSH-mediated transgene silencing in HeLa cells. Time-course of 

transgene re-repression in MORC2 knockout HeLa cells (d): the R252W MORC2 

mutant increases both the rate and overall extent of transgene re-repression. Hyper-

repression of a GFPdim HUSH reporter in MORC2-sufficient cells by over-expression 

of R252W MORC2 (e). (f) Schematic representation of the RNA-seq experiment in 

wild-type SK-N-SH neuroblastoma cells. (g – i) Expression of either wild-type MORC2 

or the R252W mutant results in hyper-repression of HUSH target genes. RNA-seq in 

SK-N-SH cells overexpressing either wild-type or R252W MORC2 reveals hyper-

repression of example HUSH target genes (g); despite R252W MORC2 being 

expressed at a much lower level than the wild-type protein (h), this effect was more 

pronounced with the R252W mutant. In total, 91 genes were hyper-repressed by the 

R252W mutant (edgeR P < 0.05), of which 31 were ZNF genes (i). 

 

 

 

 



31 
  

Online Methods 

Cell culture. HeLa cells were obtained from ECACC and were grown in RPMI 1640 

plus 10% fetal calf serum (FCS) and penicillin/streptomycin (100 U/ml); approximate 

doubling time was 22-23 hours for both wild-type cells all derivative cell lines. KBM7 

cells, obtained from Dr. Brent Cochran7, and HEK 293ET cells, a gift from Dr. Felix 

Randow, and were cultured in IMDM plus 10% FCS and penicillin/streptomycin (100 

U/ml). SK-N-SH cells were a gift from Prof. David Rubinsztein and were grown in 

DMEM plus 10% FCS and penicillin/streptomycin (100 U/ml); approximate doubling 

time was 55-60 hours for both wild-type cells and all derivative cell lines. All cell lines 

were routinely tested for mycoplasma contamination (ATCC Universal Mycoplasma 

Detection Kit). 

 

Antibodies. The following primary antibodies were used: rabbit α-MORC2 (Bethyl 

Laboratories, A300-149A used for immunoblot), rabbit α-MORC2 (Santa Cruz 

Biotechnology, sc-366271, used for immunofluorescence), rabbit α-TASOR (Atlas 

Antibodies, HPA006735), rabbit α-MPP8 (Proteintech, 16796-1-AP), rabbit α-SETDB1 

(Proteintech, 11231-1-AP), mouse α-GFP (Life Technologies, A11120), mouse α-V5 

(Abcam, ab27671), rabbit α-V5 (Abcam, ab15828), goat α-Lamin B1 (Santa Cruz, sc-

6217), rabbit α-H3K9me3 (Abcam, ab8898), rabbit α-Histone H3 (Biolegend, 601902), 

rabbit IgG (Cell Signaling, #2729), mouse α-calnexin (AF8, a kind gift from M. Brenner, 

Harvard Medical School) and mouse α-β-actin (Sigma-Aldrich, A5316). Alexa Fluor 

488- and Alexa Fluor 546-conjugated secondary antibodies for immunofluorescence 

were obtained from Molecular Probes. HRP-conjugated secondary antibodies for 

immunoblot were obtained from Jackson ImmunoResearch. 
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CRISPR/Cas9-mediated forward genetic screen. Previously we generated a 

polyclonal population of GFPdim KBM7 cells harboring epigenetically-repressed 

transgenes through lentiviral transduction with a vector expressing a GFP-fusion 

protein from the SFFV LTR promoter (pHRSIN-PSFFV-GFP-HLA-A2). The Cas9 

nuclease was stably expressed in this population through lentiviral transduction 

followed by hygromycin selection (500 μg/ml). One hundred million Cas9-expressing 

reporter KBM7 cells were transduced with the GeCKO v2 sgRNA library at a 

multiplicity of infection of ~0.1 and untransduced cells removed from the population 

through puromycin selection (0.75 μg/ml) commencing 48 hours post-transduction. 

GFPbright cells resulting from the mutagenesis were enriched by two rounds of FACS, 

with the first sort taking place 7 days post-mutagenesis and the second sort taking 

place a further 7 days later. Genomic DNA was extracted (Gentra Puregene Kit) from 

the selected GFPbright cells after the second sort together with a representative sample 

of the unsorted mutagenized library that had been grown in parallel for the equivalent 

amount of time.  

 The abundance of sgRNAs in each sample was quantified by Illumina 

sequencing. The variable region of the sgRNAs was amplified in a nested PCR 

reaction (Q5 High-Fidelity Polymerase, NEB) with forward primers binding the U6 

promoter region and reverse primers binding the constant region of the sgRNA. For 

PCR1, 32 x 100 μl reactions each using 4 µg of DNA were performed for the 

unselected library sample, and 32 x 100 μl reactions each using 4 µg of DNA were 

performed for selected cells sample. The products of these reactions were pooled, 

one-tenth was purified using Agencourt AMPure XP beads (Beckman Coulter), and 

one-tenth of resulting DNA was used as a template for 12 cycles of PCR2 with Illumina 
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P5- and P7- adapted primers. Following a further AMPure XP bead purification, PCR 

products were quantified, pooled and sequenced on an Illumina HiSeq 2500 

instrument using 50 bp single-end reads from a custom primer binding immediately 

upstream of the sgRNA sequence. All primer sequences are detailed in 

Supplementary Table 3. 

 The resulting sequence reads were trimmed of the constant portion of the 

sgRNA using the fastx toolkit, and then aligned to an index of the GeCKO v2 library 

using Bowtie 2. Uniquely aligning reads were used to generate sgRNA count tables 

for each sample, which were analyzed further using the RSA algorithm to identify 

genes significantly enriched for gene disruption events in the selected cells versus the 

unselected library.   

 

Individual CRISPR/Cas9-mediated gene disruption. Oligonucleotides (Sigma-

Aldrich) for top and bottom strands of the sgRNA were phosphorylated with T4 PNK 

(NEB), annealed by heating to 95ºC followed by slow cooling to room temperature, 

and then cloned into either the dual Cas9/sgRNA expression vector pSpCas9(BB)-2A-

Puro (Addgene #48139, kindly deposited by Dr. Feng Zhang45) or the lentiviral sgRNA 

expression vector pKLV-U6gRNA(BbsI)-PGKpuro2ABFP (Addgene #50946, kindly 

deposited by Dr. Kosuke Yusa46).  

 

Lentiviral expression. Exogenous gene expression was achieved using the 

expression vectors pHRSIN-PSFFV-GFP-PPGK-Hygro, pHRSIN-PSFFV-GFP-IRES-

mCherry-PPGK-Hygro and pHRSIN-PSFFV-GFP-PPGK-Blasto, with the gene of interest 
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inserted in place of GFP. For lentiviral expression of shRNA constructs, the pHR-

SIREN vector was used with hairpins cloned in as BamHI-EcoRI fragments. In all 

cases, lentivirus was generated through the triple transfection of HEK 293ET cells with 

the lentiviral transfer vector plus the two packaging plasmids pCMVΔR8.91 and 

pMD.G using TransIT-293 transfection reagent (Mirus) according to the 

manufacturer’s recommendations. Viral supernatant was typically harvested 48 h 

post-transfection, cell debris removed using a 0.45 µm filter, and target cells 

transduced by spin infection at 800 x g for 60 min. Transduced HeLa cells were 

selected with the following drug concentrations: puromycin, 2 μg/ml; hygromycin 50 

μg/ml; blasticidin, 3 μg/ml. Transduced SK-N-SH cells were selected using 50 μg/ml 

hygromycin.     

 

Flow cytometry. Cells were fixed in 1% PFA and analyzed on a FACSCalibur (BD) or 

a FACSFortessa (BD) instrument. Data was analyzed using FlowJo software. For cell 

sorting, cells were resuspended in PBS + 2% FCS and FACS was carried on an Influx 

cell sorter (BD). 

 

Immunofluorescence. HeLa cells were grown overnight on glass coverslips, fixed 

with the addition of 4% PFA for 10 minutes, permeabilized with 0.5% Triton X-100 for 

5 minutes, and then blocked for at least 30 min using 4% BSA dissolved in PBS + 

0.1% Tween-20 (PBS-T). The primary antibody was diluted in 40 µl of blocking solution 

and was applied for 1 h, and, following five washes in PBS-T, fluorophore-conjugated 

secondary antibody (Molecular Probes) was applied for 45 min in the same way. 

Following a further five washes in PBS-T and a final rinse in distilled water, coverslips 
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were mounted in 4 µl ProLong Gold Antifade Mountant with DAPI (Thermo Fisher 

Scientific) and imaged using a Nikon LSM880 laser scanning confocal microscope 

(Zeiss). Images were processed using Adobe Photoshop (Adobe, CA) or GIMP 2.  

 

Co-immunoprecipitation. Cells were washed once in PBS and then lysed in cell lysis 

buffer (0.5% IGEPAL, 85 mM KCl and 10 mM HEPES in distilled water). Nuclei were 

harvested by centrifugation at 800 x g for 5 minutes at 4ºC, and then lysed in nuclear 

lysis buffer (1% IGEPAL plus 1:100 Benzonase in TBS). Insoluble nuclear material 

was removed by centrifugation (10,000 x g for 5 minutes at 4ºC) and then the 

supernatant was pre-cleared with protein G magnetic beads (Thermo Fisher Scientific) 

for 1 h at 4°C. Immunoprecipitation was performed by adding 1 µg of antibody and 

protein G magnetic beads for 2 h at 4°C, and, following three washes of the beads in 

lysis buffer, samples were eluted in SDS sample buffer.  

 

Immunoblotting. Cells were lysed in 1% SDS plus 1:100 Benzonase (Sigma-Aldrich) 

for 20 minutes at room temperature, and then heated to 70°C in SDS sample buffer 

for 10 min. Following separation by SDS-PAGE, proteins were transferred to a PVDF 

membrane (Millipore) which was then blocked in 5% milk in PBS + 0.2% Tween-20. 

Membranes were probed overnight with the indicated antibodies, washed three times 

PBS + 0.2% Tween-20, and then incubated with HRP-conjugated secondary 

antibodies (Jackson ImmunoResearch) for 45 minutes at room temperature. Reactive 

bands were visualized using SuperSignal West Pico or West Dura (Thermo Fisher 

Scientific). All blots presented in the figures have been cropped; the original uncropped 

images can be found in Supplementary Figure 10. 
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Subcellular fractionation. One million cells were washed in PBS and then again in 

Buffer A (10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT and an EDTA-free 

protease inhibitor cocktail tablet (Roche)). The cells were then lysed upon 

resuspension in Buffer A plus 0.1% (v/v) IGEPAL on ice for 10 min. Nuclei were 

pelleted by centrifugation (1400 x g for 4 min at 4°C) and the supernatant, which 

contains the cytosolic fraction, was collected. The nuclear pellet was resuspended in 

Buffer B (20 mM HEPES, 1.5 mM MgCl2, 300 mM NaCl, 0.5 mM DTT, 25% v/v glycerol, 

0.2 mM EDTA and an EDTA-free protease inhibitor cocktail tablet) for 10 min on ice, 

and, following centrifugation at 1700 x g for 4 min at 4°C, the supernatant (containing 

the nucleosolic fraction) was removed. The insoluble pellet, constituting the chromatin 

fraction, was subsequently solubilized in 1% SDS plus 1:100 Benzonase for 20 min at 

room temperature.   

 

ChIP-seq. Cells were washed once in PBS, resuspended in growth medium, and then 

cross-linked in 1% formaldehyde for 10 min. The reaction was quenched by adding 

glycine to a final concentration of 0.125 M for 5 min before the cells were lysed in cell 

lysis solution (1 mM HEPES, 85 mM KCl, 0.5% IGEPAL). Nuclei were pelleted by 

centrifugation, and then resuspended in nuclear lysis solution (5 mM Tris, 10 mM 

EDTA, 1% SDS) for 10 min. The chromatin was sheared using a Bioruptor 

(Diagenode; high power, 20 cycles of 30 s on, 30 s off) to obtain a mean fragment size 

of ~300 bp. Insoluble material was removed by centrifugation. The chromatin solution 

was pre-cleared with protein A sepharose (Sigma-Aldrich) and then 

immunoprecipitated overnight using 5 µg primary antibody and protein A sepharose, 

or, for V5-MORC2, anti-V5 agarose affinity gel (Sigma-Aldrich, A7345). The next day 

the beads were washed a total of five times, and then bound protein-DNA complexes 
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eluted in 150 mM NaHCO3 and 1% SDS. Cross-links were reversed by overnight 

incubation at 67ºC with 0.3 M NaCl and RNaseA. Proteinase K was then added and 

the samples incubated for 2 h at 45ºC, and then the DNA was purified using a spin 

column (Qiagen PCR purification kit). Illumina sequencing libraries were produced 

from this material using the TruSeq ChIP sample prep kit (Illumina), and 50 bp single-

end reads generated on a HiSeq 2500 instrument. Reads were aligned to the human 

genome (GRCh37) using Bowtie 2, and reads with a MAPQ score >10 were imported 

into SeqMonk and EaSeq47 for further analysis. V5-MORC2 binding sites were 

identified using the implementation of the MACS peak caller in SeqMonk (windows 

size = 300 bp; p-value < 0.0001) and the resulting 4500 peaks were centered and 

plotted using the Average Signal Tracks tool in EaSeq. H3K4me3 ChIP-seq data 

generated by the Bernstein laboratory was downloaded from the ENCODE project 

(ENCSR000AOF). 

  

qRT-PCR. RNA was prepared using the RNeasy Plus kit (Qiagen) and converted into 

cDNA using Super RT reverse transcriptase (HT Biotechnology) and a poly(dT) 

primer. Quantification by qPCR was performed on an ABI 7500 Real Time PCR 

System (Applied Biosystems) using SYBR green PCR mastermix (Life Technologies) 

in a final reaction volume of 25 μl. Thermal cycling parameters were: 50°C for 2 min; 

95°C for 5 min; 40 cycles of 95°C for 15 s and 58°C for 1 min. Error bars represent the 

standard deviation of at least three technical replicates. Primer sequences are detailed 

in Supplementary Table 3. 
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Expression and purification of the CW domain of MORC2. A synthetic, E. coli 

codon-optimized DNA construct (IDT) encoding the MORC2 CW domain (residues 

490-546) plus a C-terminal FLAG tag was cloned into the expression vector pET-28a-

N-His-SUMO between the BamHI and NotI restriction sites for production of the N-

terminally His-SUMO-tagged protein product. Protein was produced in E. coli 

BL21(DE3) cells through overnight incubation at 18 ºC with shaking at 220 rpm 

following induction with 200 µM IPTG. Cell pellets were resuspended in 30 ml lysis 

buffer (50 mM Tris-HCl, 500 mM NaCl, 10 mM imidazole, 0.1 mM ZnSO4, 1 mM DTT, 

1x Complete EDTA-free protease inhibitors, pH 8.0), flash frozen in liquid nitrogen and 

stored at -80 ºC. 

Pellets were thawed and further lysed by sonication on ice, before clarification 

by centrifugation (45 min, 40,000 x g, 4ºC). The resulting His-SUMO-CW-FLAG-

containing supernatant was subjected to immobilized Ni-NTA affinity chromatography 

with wash (50 mM Tris.HCl, 500 mM NaCl, 10 mM imidazole, 0.1 mM ZnSO4, 

1 mM DTT, pH 8.0) and elution (50 mM Tris.HCl, 500 mM NaCl, 300 mM imidazole, 

0.1 mM ZnSO4, 1 mM DTT, pH 8.0) buffers, and then desalted using a Bio-Rad Econo-

Pac 10DG column into cleavage buffer (20 mM HEPES, 150 mM NaCl, 0.1 mM ZnSO4,  

1 mM DTT, pH 7.4). The His-SUMO tag was cleaved from the protein by the addition 

of His-tagged SENP1 protease (1:10 w/w) for 18 h on ice. Subtractive immobilized Ni-

NTA affinity chromatography was then used to deplete the tagged protease and the 

free His-SUMO tag, and the protein was further purified by size exclusion 

chromatography on a Superdex 75 (10/300) column in a buffer containing 20 mM 

HEPES, 200 mM NaCl, 0.1 mM ZnSO4, 1 mM TCEP, pH 7.3. The mass of the intact, 

pure proteins were confirmed using a Waters Xevo G2 Q-ToF mass spectrometer. 
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Differential Viral Accessibility (DIVA). Six million wild-type and MORC2 knockout 

HeLa cells were seeded at a density of 1x106 cells per well of a 6-well plate, and 

transduced on successive days with the lentiviral vector pHRSIN-PSFFV-mCherry-

WPRE (encoding the mCherry fluorescent protein driven by the spleen focus-forming 

virus LTR promoter) at high multiplicity of infection such that ~100% of the cells were 

mCherry+. One day after the second transduction genomic DNA was extracted (Gentra 

Puregene Kit) and digested overnight with NlaIII (NEB). The distribution of NlaIII sites 

in the lentiviral vector is such that DNA fragments smaller than ~1.8 kb cannot contain 

viral-genome junctions; large fragments were therefore enriched through a size-

selection step using a 0.5x Agencourt AMPure XP bead clean-up (Beckman Coulter). 

An annealed dsDNA adaptor with an NlaIII-compatible overhang was then ligated onto 

the ends of the genomic DNA fragments using T4 DNA Ligase (NEB) overnight at 

16°C, and the ligated products purified through a further AMPure bead clean-up. Virus-

genome junctions were then amplified in 200 cycles of a linear PCR reaction using 

Accuprime Taq (Thermo Fisher Scientific) using a biotinylated primer binding the just 

upstream of the 5’ LTR in the integrated provirus, and the resulting products were 

annealed to streptavidin-coated M-280 dynabeads (Thermo Fisher Scientific). 

Following 5 x 10 minute washes with PBS + 0.1% Tween-20, virus-genome junctions 

were amplified through 12 cycles of on-bead exponential PCR reaction with an Illumina 

P5-adapted primer binding the proviral 5’LTR and a P7-adapted reverse primer 

binding the splinkerette adaptor. After a final AMPure XP clean-up, PCR products were 

quantified, pooled and sequenced on an Illumina HiSeq2500 instrument generating 50 

bp single-end reads from a custom primer annealing to the extreme end of the proviral 

5’ LTR. All oligonucleotide sequences are detailed in Supplementary Table 3. 
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 The resulting sequence reads were trimmed of adaptor sequences using the 

fastx toolkit and aligned to the human genome (hg19) using Bowtie 2. Reads with a 

MAPQ score > 10 were imported into SeqMonk and converted into a set of unique 

points of integration. The Intensity Difference Filter in Seqmonk was used to identify 

10 kb genomic windows (overlapping by 5 kb) significantly enriched for lentiviral 

integration sites in MORC2 knockout cells versus the parental wild-type cells; 

individual loci were only considered to exhibit decompaction if at least two adjacent 

windows reached statistical significance. Full data for all genomic loci is detailed in 

Supplementary Table 2. 

 

Micrococcal nuclease accessibility assay. Wild-type and MORC2 knockout HeLa 

cells were washed once in PBS, resuspended in growth medium, and then cross-

linked by the addition of 1% formaldehyde for 10 min. The reaction was quenched by 

addition of glycine to a final concentration of 0.125 M for 5 min. The cells were then 

lysed in cell lysis solution (1 mM HEPES, 85 mM KCl, 0.5% IGEPAL) and nuclei 

pelleted by centrifugation (800 x g, 5 min, 4°C). The nuclei (5 x 105 per reaction) were 

then resuspended in micrococcal nuclease buffer supplemented with BSA (NEB), and 

chromatin digested by the addition of 2 units of micrococcal nuclease (NEB) for 30 min 

at 37°C. EDTA was added to a final concentration of 45 mM to stop the reaction. Nuclei 

were then lysed in 1% SDS, RNA digested with RNaseA (37°C for 30 min) and cross-

links reversed overnight at 65°C. Proteins were then digested with proteinase K (37°C 

for 2 h) and DNA isolated by phenol-chloroform extraction followed by ethanol 

precipitation. Size-selection of the digested DNA was achieved using SPRIselect 

beads (Beckman Coulter) using 0.6 volumes of beads. The bound fraction contained 

large fragments (>~1000bp); the supernatant containing unbound fragments 
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(<~1000bp) was removed and subsequently purified by the addition of an extra 1 

volume of beads. The amount of DNA from target loci in the accessible and 

inaccessible fractions versus the pre-size-selected starting material was measured by 

qPCR performed on a CFX96 Touch Real-Time PCR machine (Bio-Rad) using iTaq 

Universal SYBR Green Supermix (Bio-Rad) in a final reaction volume of 25 μl. Thermal 

cycling parameters were: 50°C for 2 min; 95°C for 5 min; 40 cycles of 95°C for 15 s 

and 58°C for 1 min. Error bars represent the standard deviation of at least three 

technical replicates. Primer sequences are detailed in Supplementary Table 3. 

 

RNA-seq. Total RNA was extracted using the miRNEasy kit (Qiagen) as per the 

manufacturer’s instructions and multiplexed Illumina sequencing libraries were 

prepared using the TruSeq Stranded Total RNA Library Prep Kit (Illumina). For the 

comparison between wild-type and MORC2 knockout HeLa cells, ribosomal RNA was 

depleted using the Ribo-Zero Gold rRNA Removal Kit (Epicentre) and 150 bp paired-

end reads were generated on an Illumina HiSeq2500 instrument. For all comparisons 

between wild-type and R252W MORC2, polyA+ RNA was sequenced on an Illumina 

HiSeq2500 instrument using 50 bp single-end reads. Sequence reads were aligned to 

the human genome (GRCh37) using HISAT2. Mapped reads with a MAPQ score >40 

were imported into SeqMonk and further analyzed using the RNA-seq quantitation 

pipeline followed by DEseq2 or edgeR analysis.  

 

Statistics. No statistical methods were used to predetermine sample size. 

Experiments were not randomized and the experimenters were not blinded to the 

outcome. Genes significantly enriched for inactivating mutations in the CRISPR screen 
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were evaluated using the RSA algorithm comparing the frequency of sgRNAs in the 

GFPbright selected population versus the unselected mutangenized pool. All qRT-PCR 

data is represented as the mean +/- standard deviation of at least three technical 

replicates, and the data are representative of at least two independent experiments. 

For the RNA-seq data presented in Fig. 5e, three independent MORC2 knockout 

clones were used; genes exhibiting significantly altered expression in MORC2 

knockout cells were identified using the implementation of DEseq2 in Seqmonk (P < 

0.05). For the RNA-seq data presented in Fig. 6g-i, cells were transduced in triplicate 

with lentiviral vectors to express either wild-type or R252W mutant MORC2; genes 

exhibiting significantly reduced expression upon expression of the R252W mutant as 

compared to wild-type MORC2 were identified using the implementation of edgeR in 

Seqmonk (P < 0.05). 

 

Data availability. The sequence data from the CRISPR/Cas9 forward genetic screen, 

ChIP-seq, DIVA and RNA-seq experiments that support the findings of this study have 

been deposited in GEO with the primary accession code GSE95480. 
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