1,234 research outputs found

    Foundations of Quantum Discord

    Full text link
    This paper summarizes the basics of the notion of quantum discord and how it relates to other types of correlations in quantum physics. We take the fundamental information theoretic approach and illustrate our exposition with a number of simple examples.Comment: 3 pages, special issue edited by Diogo de Oliveira Soares Pinto et a

    Work and Quantum Phase Transitions: Is there Quantum Latency?

    Full text link
    We study the physics of quantum phase transitions from the perspective of non-equilibrium thermodynamics. For first order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models.Comment: accepted in PR

    Quantum Correlations in Multipartite Quantum Systems

    Full text link
    We review some concepts and properties of quantum correlations, in particular multipartite measures, geometric measures and monogamy relations. We also discuss the relation between classical and total correlationsComment: to be published as a chapter of the book "Lectures on general quantum correlations and their applications" edited by F. Fanchini, D. Soares-Pinto, and G. Adesso (Springer, 2017

    Ethylene and Ripening of Mangoes

    Full text link

    Invariant quantum discord in qubit-qutrit systems under local dephasing

    Get PDF
    We investigate the dynamics of quantum discord and entanglement for a class of mixed qubit-qutrit states assuming that only the qutrit is under the action of a dephasing channel. We demonstrate that even though the entanglement in the qubit-qutrit state disappears in a finite time interval, partial coherence left in the system enables quantum discord to remain invariant throughout the whole time evolution

    Charge Transport Through In-pSi (100) Schottky Barrier

    Get PDF

    Surface and interface study of pulsed-laser-deposited off-stoichiometric NiMnSb thin films on Si(100) substrate

    Get PDF
    We report a detailed study of surface and interface properties of pulsed-laser deposited NiMnSb films on Si (100) substrate as a function of film thickness. As the thickness of films is reduced below 35 nm formation of a porous layer is observed. Porosity in this layer increases with decrease in NiMnSb film thickness. These morphological changes of the ultra thin films are reflected in the interesting transport and magnetic properties of these films. On the other hand, there are no influences of compositional in-homogeneity and surface/interface roughness on the magnetic and transport properties of the films.Comment: 13 pages, 7 figures, Submitted to Phys. Rev.

    Impaired automatic but intact volitional inhibition in primary tic disorders

    Get PDF
    The defining character of tics is that they can be transiently suppressed by volitional effort of will, and at a behavioural level this has led to the concept that tics result from a failure of inhibition. However, this logic conflates the mechanism responsible for the production of tics with that used in suppressing them. Volitional inhibition of motor output could be increased to prevent the tic from reaching the threshold for expression, although this has been extensively investigated with conflicting results. Alternatively, automatic inhibition could prevent the initial excitation of the striatal tic focus-a hypothesis we have previously introduced. To reconcile these competing hypotheses, we examined different types of motor inhibition in a group of 19 patients with primary tic disorders and 15 healthy volunteers. We probed proactive and reactive inhibition using the conditional stop-signal task, and applied transcranial magnetic stimulation to the motor cortex, to assess movement preparation and execution. We assessed automatic motor inhibition with the masked priming task. We found that volitional movement preparation, execution and inhibition (proactive and reactive) were not impaired in tic disorders. We speculate that these mechanisms are recruited during volitional tic suppression, and that they prevent expression of the tic by inhibiting the nascent excitation released by the tic generator. In contrast, automatic inhibition was abnormal/impaired in patients with tic disorders. In the masked priming task, positive and negative compatibility effects were found for healthy controls, whereas patients with tics exhibited strong positive compatibility effects, but no negative compatibility effect indicative of impaired automatic inhibition. Patients also made more errors on the masked priming task than healthy control subjects and the types of errors were consistent with impaired automatic inhibition. Errors associated with impaired automatic inhibition were positively correlated with tic severity. We conclude that voluntary movement preparation/generation and volitional inhibition are normal in tic disorders, whereas automatic inhibition is impaired-a deficit that correlated with tic severity and thus may constitute a potential mechanism by which tics are generated

    Quantum correlations in a few-atom spin-1 Bose-Hubbard model

    Get PDF
    We study the thermal quantum correlations and entanglement in spin-1 Bose-Hubbard model with two and three particles. While we use negativity to calculate entanglement, more general non-classical correlations are quantified using a new measure based on a necessary and sufficient condition for zero-discord state. We demonstrate that the energy level crossings in the ground state of the system are signalled by both the behavior of thermal quantum correlations and entanglement

    Decoherence on a two-dimensional quantum walk using four- and two-state particle

    Full text link
    We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position degree of freedom and between the two spatial (xyx-y) degrees of freedom using measurement induced disturbance (MID), we show that the two schemes using a two-state particle are more robust against decoherence than the Grover walk, which uses a four-state particle. We also show that the symmetries which hold for two-state quantum walks breakdown for the Grover walk, adding to the various other advantages of using two-state particles over four-state particles.Comment: 12 pages, 16 figures, In Press, J. Phys. A: Math. Theor. (2013
    corecore