23 research outputs found
Flow Blurring-Enabled Production of Polymer Filaments from Poly(ethylene oxide) Solutions
Flow blurring (FB) atomizers are relatively
simple yet robust devices used for the generation of sprays
from solutions of a wide range of viscosities. In this work, we
have demonstrated that FB devices may also be applied for
massive production of liquid filaments from polymeric
solutions. They can later be transformed into solid filaments
and fibers, leading to the production of so-called fiber mats.
The liquid precursors consisted of poly(ethylene oxide)
(PEO) solutions of varying molecular weights (105 [100k]
to 4 × 106 g/mol [4M]) and concentrations. The FB device
was operated in the gas pressure range of 3−6 bar. Except for
solutions of PEO 100k, all solutions exhibited a shear thinning
behavior. For massive filament production, a threshold
polymer concentration (ct) was identified for each molecular
weight. Below such concentration, the atomization resulted in droplets (the classical FB functioning mode). Such a threshold
value decreased as the PEO molecular weight increased, and it coincides with the polymer coil overlap concentration, c*. The
viscoelastic nature of the solutions was also observed to increase with the molecular weight. A 3.2 dependency of the zero-shear
rate viscosity on a so-called Bueche parameter was found for filament production, whereas a nearly linear dependency was found
for droplet production. In general, the mean diameter of the filaments decreased as they traveled downstream from the
atomization point. Furthermore, at a given distance from the atomizer outlet and gas pressure, the mean filament diameter
slightly shifted toward larger sizes with increasing PEO molecular weight. The tendency agrees well with the calculated
filaments’ Deborah number, which increases with PEO molecular weight. The approach presented herein describes a highthroughput
and efficient method for the massive production of viscous filaments. These may be transformed into fibers by an
on-line drying step.Ministerio de Economía y Competitividad DPI2016-78887-C3-1-
Flow blurring atomization of Poly(ethylene oxide) solutions below the coil overlap concentration
Atomization of polymer solutions has important technological implications across many fields. Here, we investigated the atomization dynamics of diluted, polymer solutions using Flow Blurring (FB) technology. Aqueous solutions of poly(ethylene oxide) [PEO] of viscosity-averaged molecular weight in the range 100000 g/mol – 4000000 g/mol and varying concentrations were sprayed with a FB atomizer having an orifice diameter (D) of 700μm and a liquid feed-tube-to-orifice separation (H) of 100μm. The solutions belong to the dilute regime, where polymer coil overlap does not occur, that is φ= [Formula presented] <φcrit (Modesto-López, Pérez-Arjona, & Gañán-Calvo, 2019). Shear viscosity measurements indicated that the solutions had viscosities of the order of that of the solvent and exhibited a Newtonian-like behavior. However, during the atomization, and due to the relatively high shear stress induced in the atomizer, the solutions exhibit extensional rheology, which most likely arises from the stretching of the polymer chains in-flight. Although initially the atomization resulted in formation of filaments, these broke up into droplets at relatively short distances from the atomizer discharge orifice as elucidated by images from ultra-high speed videos. The phenomenon is in contrast with that observed in FB-based atomization of semi-diluted polymer solutions with concentrations larger than the polymer coil overlap concentration, c∗. FB atomization of the diluted solutions resulted in a decrease in droplet size with increasing the gas-to-liquid mass ratio (GLR). The approach herein aims at understanding the droplet formation dynamics of viscoelastic, polymer solutions with FB, for applications in large-scale synthesis of materialsMinisterio de Economía, Industria y Competitividad DPI2016-78887-C3-1-
Co-Al spinel-based nanoparticles synthesized by flame spray pyrolysis for glycerol conversion
The catalytic properties of Co-Al spinel nanoparticles prepared by liquid-feed flame spray pyrolysis (L-F FSP) were investigated in the glycerol conversion in gas phase in an atmosphere of hydrogen. Reduction at 1123 K of the as-synthesized spinel nanoparticles induced the formation a new phase containing metallic cobalt species. Although, the reducibility of cobalt oxides is greatly decreased due to interaction with aluminium species, this strong interaction may prevent the aggregation of Co particles under the harsh reduction conditions. X-ray photoelectron spectroscopy (XPS) of the reduced spinel nanoparticles at 1123 K revealed that the Co/Al atomic ratio has decreased to Co/Al = 0.11, which may indicate a redistribution of the aluminum and cobalt species at the surface of the sample submitted to the reduction in a flow of hydrogen at 1123 K. X-ray diffraction (XRD) and high resolution electron microscopy (HRTEM) also reinforced the formation of metallic cobalt species after reduction of cobalt from the spinel nanoparticles at 1123 K. The main products obtained from the conversion of glycerol in the gas phase were hydroxyacetone, pyruvaldehyde, lactic acid and lactide. FSP ensured uniform dispersion of the active metal on a support material
Micromixing with In-Flight Charging of Polymer Solutions in a Single Step Enables High-Throughput Production of Micro- and Nanofibers
Controlled ejection of liquids at capillary scales is a ubiquitous phenomenon associated with significant advances in, for instance, molecular biology or material synthesis. In this work, we introduce a high-throughput approach, which relies on a micromixing mechanism to eject and fragment viscous liquids, for production of microfibers from poly(vinyl alcohol) solutions. First, filaments were generated pneumatically with a so-called flow-blurring atomizer and using liquid flow rates of up to ∼1 L/min. Subsequently, the filaments were ionized online by corona discharge and consecutively manipulated with an electric field created by disc electrodes. Such charging of the filaments and the effect of the electric field allowed for their ultrafast elongation and diameter reduction from 150 μm down to fibers of 500 nm, which after collection exhibited fabric-like texture. The approach presented herein is a general procedure with potential for scalability that, upon proper adaptation, may be extended to various polymeric materials.Junta de Andalucía - Consejería de Economía, Conocimiento, Empresas y Universidades P18-FR-3623Junta de Andalucía - Consejería de Economía, Conocimiento, Empresas y Universidades - FEDER US-138077
The high-throughput atomization of polymer solutions for fiber synthesis in a single step aided with corona ionizers
Abstract Polymer microfibers are ubiquitous structures across virtually all technological fields. Their applications include, for instance, filter media, tissue regeneration, wound healing and dressing, and reinforcement materials. The most effective methods for fabrication of fibrous micro and nanomaterials rely on electric fields to spin a liquid jet into an ultrafine thread that rapidly dries up forming a fiber. Continuous spinning and collection leads to formation of fiber mats. Here we report a robust yet simple approach for the massive production of liquid threads, which upon acquiring electrical charges in-flight are collected downstream in the form of fibers. The entire process takes place on-line in a single step. The liquid threads are produced through the fragmentation of a polymer solution bulk due to a turbulent interaction of a gas–liquid interface in the interior of an engineered device, a so-called Flow Blurring atomizer. The particularity of this approach consists precisely in such vigorous interaction, at the micrometer scale, which triggers a bubbly motion in the interior of the device, that is a “micro-mixing”. Subsequently, the threads are passed through ionized air currents, at ambient conditions, and then stretched to sub-micrometer dimensions by electric fields. Polyvinylpyrrolidone (PVP) as well as carbon nanotubes (CNTs) or graphene oxide sheets (GOSs)-containing PVP fibers, with diameters in the range 100–900 nm, were synthesized via this approach. In the cases studied herein the method was operated at liquid flow rates (i.e. production rates) of 0.2 mL/min but it could be readily increased up to a few tens of mL/min. The method requires further improvement and optimization, nevertheless it is a promising alternative for mass production of polymer fibers
The high-throughput atomization of polymer solutions for fiber synthesis in a single step aided with corona ionizers
This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. Te images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Polymer microfibers are ubiquitous structures across virtually all technological fields. Their applications include, for instance, filter media, tissue regeneration, wound healing and dressing, and reinforcement materials. The most effective methods for fabrication of fibrous micro and nanomaterials rely on electric fields to spin a liquid jet into an ultrafine thread that rapidly dries up forming a fiber. Continuous spinning and collection leads to formation of fiber mats. Here we report a robust yet simple approach for the massive production of liquid threads, which upon acquiring electrical charges in-flight are collected downstream in the form of fibers. The entire process takes place on-line in a single step. The liquid threads are produced through the fragmentation of a polymer solution bulk due to a turbulent interaction of a gas–liquid interface in the interior of an engineered device, a so-called Flow Blurring atomizer. The particularity of this approach consists precisely in such vigorous interaction, at the micrometer scale, which triggers a bubbly motion in the interior of the device, that is a “micro-mixing”. Subsequently, the threads are passed through ionized air currents, at ambient conditions, and then stretched to sub-micrometer dimensions by electric fields. Polyvinylpyrrolidone (PVP) as well as carbon nanotubes (CNTs) or graphene oxide sheets (GOSs)-containing PVP fibers, with diameters in the range 100–900 nm, were synthesized via this approach. In the cases studied herein the method was operated at liquid flow rates (i.e. production rates) of 0.2 mL/min but it could be readily increased up to a few tens of mL/min. The method requires further improvement and optimization, nevertheless it is a promising alternative for mass production of polymer fibers
Visualization and size-measurement of droplets generated by Flow Blurring® in a high-pressure environment
<p>Flow Blurring® (FB) atomization is a highly efficient method to produce aerosols. It originates from an unexpected turbulent back flow motion in the interior of the atomizer. The onset for the appearance of such pattern is dictated by a geometrical parameter, ϕ, that is, the ratio of the distance from the tip of the liquid feeding tube to the discharge orifice (H), and the diameter of the discharge orifice (D). In this work, a FB atomizer with a nominal ϕ = 1/6 was used to produce water and ethanol droplets into pressurized environments (>1 MPa). The droplet size distributions and mean droplet speeds were investigated using (1) direct visualization with an ultra-high-speed video camera coupled with an automated droplet measurement (ADM) program and (2) using a light scattering instrument. Light scattering measurements, with water and ethanol, varying the driving pressure to produce the aerosol (ΔP), indicate a power dependence of ∼2/5 of the dimensionless mean droplet diameter (<math><mrow>D<mo>¯</mo></mrow></math>/D<sub>o</sub>) on the dimensionless liquid flow rate (Q/Q<sub>o</sub>). At higher liquid flow rate, the optical resolution of the droplets is improved compared to lower volumetric flow rates, thus facilitating analyses with the ADM program. The approach outlined herein provides a guideline for characterization and implementation of the FB technology in high-pressure applications.</p> <p>Copyright © 2018 American Association for Aerosol Research</p
Integrating a micro-mixing mechanism and on-line thermal processing for the large-scale ejection of polymeric liquid threads for producing ultrafine fibers
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.Micro/nanofibers are structures that nowadays have a wide range of cutting-edge applications including energy generation and storage devices, smart textiles, cell growth, and tissue engineering. These fibrous materials are mostly produced from polymer solutions spun, under laminar flow conditions, into nanofibers by external forces. However, the turbulent interaction of gas-liquid interfaces offers an innovative approach for the high-throughput production of nanofibers. Here, we present Flow Blurring (FB), a solely pneumatic approach for the massive production of liquid threads of polymer solutions, which relies on a micro-mixing mechanism that triggers a turbulent motion capable of fragmenting a viscous flow. The as-ejected threads are subsequently processed thermally, on-line in a single-step, thus producing micro/nanofibers that form mats. The method operates with relatively large liquid flow rates, equivalent of a high production rate, and is thus suitable for industrial production of engineered nanomaterials. In this work, we used solutions of poly(vinyl alcohol) (PVA) to study its ejection and fragmentation dynamics through computational fluid dynamics (CFD) simulations. In addition, the physics underlying the regulation of the liquid flow rate in FB atomizers are proposed. Fibers with typical diameters in the range 400-800 nm were produced by online heating of the liquid threads. Liquid ejection experiments were performed under different operating conditions thus verifying the capability of the method for synthesizing submicrometer-sized fibers with high uniformity and production rates suitable for scaling up