18 research outputs found

    Geometrical Frustration in Two Dimensions: Idealizations and Realizations of a Hard-Disk Fluid in Negative Curvature

    Get PDF
    We examine a simple hard-disk fluid with no long-range interactions on the two-dimensional space of constant negative Gaussian curvature, the hyperbolic plane. This geometry provides a natural mechanism by which global crystalline order is frustrated, allowing us to construct a tractable, one-parameter model of disordered monodisperse hard disks. We extend free-area theory and the virial expansion to this regime, deriving the equation of state for the system, and compare its predictions with simulations near an isostatic packing in the curved space. Additionally, we investigate packing and dynamics on triply periodic, negatively curved surfaces with an eye toward real biological and polymeric systems

    How to Pare a Pair: Topology Control and Pruning in Intertwined Complex Networks

    Full text link
    Recent work on self-organized remodeling of vasculature in slime-mold, leaf venation systems and vessel systems in vertebrates has put forward a plethora of potential adaptation mechanisms. All these share the underlying hypothesis of a flow-driven machinery, meant to alter rudimentary vessel networks in order to optimize the system's dissipation, flow uniformity, or more, with different versions of constraints. Nevertheless, the influence of environmental factors on the long-term adaptation dynamics as well as the networks structure and function have not been fully understood. Therefore, interwoven capillary systems such as found in the liver, kidney and pancreas, present a novel challenge and key opportunity regarding the field of coupled distribution networks. We here present an advanced version of the discrete Hu--Cai model, coupling two spatial networks in 3D. We show that spatial coupling of two flow-adapting networks can control the onset of topological complexity in concert with short-term flow fluctuations. We find that both fluctuation-induced and spatial coupling induced topology transitions undergo curve collapse obeying simple functional rescaling. Further, our approach results in an alternative form of Murray's law, which incorporates local vessel interactions and flow interactions. This geometric law allows for the estimation of the model parameters in ideal Kirchhoff networks and respective experimentally acquired network skeletons

    Disclination-mediated thermo-optical response in nematic glass sheets

    Get PDF
    Nematic solids respond strongly to changes in ambient heat or light, significantly differently parallel and perpendicular to the director. This phenomenon is well characterized for uniform director fields, but not for defect textures. We analyze the elastic ground states of a nematic glass in the membrane approximation as a function of temperature for some disclination defects with an eye towards reversibly inducing three-dimensional shapes from flat sheets of material, at the nano-scale all the way to macroscopic objects, including non-developable surfaces. The latter offers a new paradigm to actuation via switchable stretch in thin systems.Comment: Specific results for spiral defects now added. References to Witten, Mahadevan and Ben Amar now added

    Frame, metric and geodesic evolution in shape-changing nematic shells.

    Get PDF
    Non-uniform director fields in flat, responsive, glassy nematic sheets lead to the induction of shells with non-trivial topography on the application of light or heat. Contraction along the director causes metric change, with, in general, the induction of Gaussian curvature, that drives the topography change. We describe the metric change, the evolution of the director field, and the transformation of reference state material curves, e.g. spirals into radii, as curvature develops. The non-isometric deformations associated with heat or light change the geodesics of the surface, intriguingly even in regions where no Gaussian curvature results

    Impossible ecologies: Interaction networks and stability of coexistence in ecological communities

    Full text link
    Does an ecological community allow stable coexistence? Identifying the general principles that determine the answer to this question is a central problem of theoretical ecology. Random matrix theory approaches have uncovered the general trends of the effect of competitive, mutualistic, and predator-prey interactions between species on stability of coexistence. However, an ecological community is determined not only by the counts of these different interaction types, but also by their network arrangement. This cannot be accounted for in a direct statistical description that would enable random matrix theory approaches. Here, we therefore develop a different approach, of exhaustive analysis of small ecological communities, to show that this arrangement of interactions can influence stability of coexistence more than these general trends. We analyse all interaction networks of N⩽5N\leqslant 5 species with Lotka-Volterra dynamics by combining exact results for N⩽3N\leqslant 3 species and numerical exploration. Surprisingly, we find that a very small subset of these networks are "impossible ecologies", in which stable coexistence is non-trivially impossible. We prove that the possibility of stable coexistence in general ecologies is determined by similarly rare "irreducible ecologies". By random sampling of interaction strengths, we then show that the probability of stable coexistence varies over many orders of magnitude even in ecologies that differ only in the network arrangement of identical ecological interactions. Finally, we demonstrate that our approach can reveal the effect of evolutionary or environmental perturbations of the interaction network. Overall, this work reveals the importance of the full structure of the network of interactions for stability of coexistence in ecological communities.Comment: 14 pages, 6 figures, 3 supplementary figure

    Spherical Foams in Flat Space

    Full text link
    Regular tesselations of space are characterized through their Schlafli symbols {p,q,r}, where each cell has regular p-gonal sides, q meeting at each vertex, and r meeting on each edge. Regular tesselations with symbols {p,3,3} all satisfy Plateau's laws for equilibrium foams. For general p, however, these regular tesselations do not embed in Euclidean space, but require a uniform background curvature. We study a class of regular foams on S^3 which, through conformal, stereographic projection to R^3 define irregular cells consistent with Plateau's laws. We analytically characterize a broad classes of bulk foam bubbles, and extend and explain recent observations on foam structure and shape distribution. Our approach also allows us to comment on foam stability by identifying a weak local maximum of A^(3/2)/V at the maximally symmetric tetrahedral bubble that participates in T2 rearrangements.Comment: 4 pages, 4 included figures, RevTe
    corecore