157 research outputs found

    Sodium hydroxide pretreatment of corn stover and subsequent enzymatic hydrolysis: An investigation of yields, kinetic modeling and glucose recovery

    Get PDF
    Many aspects associated with conversion of lignocellulose to biofuels and other valuable products have been investigated to develop the most effective processes for biorefineries. The goal of this research was to improve the efficiency and effectiveness of the lignocellulose conversion process by achieving a more basic understanding of pretreatment and enzymatic hydrolysis at high solids, including kinetic modeling and separation and recovery of glucose. Effects of NaOH pretreatment conditions on saccharide yields from enzymatic hydrolysis were characterized in low- and high-solids systems. Factors associated with pretreatment and hydrolysis were investigated, including duration of pretreatment at different temperatures and NaOH loadings, as well as different solids and enzyme loadings. Under relatively mild pretreatment conditions, corn stover composition was essentially equivalent for all time and temperature combinations; however, components were likely affected by pretreatment, as differences in subsequent cellulose conversions were observed. Flushing the hydrolyzate and reusing the substrate was also studied as a method for inhibitor mitigation while increasing overall glucose yields. Flushing the PCS throughout the hydrolysis reaction eliminated the need to wash the pretreated biomass prior to enzymatic hydrolysis when supplementing with low doses of enzyme, thus reducing the amount of process water required. The robustness of an established kinetic model was examined for heterogeneous hydrolysis reactions in high-solids systems. Michaelis-Menten kinetics is the traditional approach to modeling enzymatic hydrolysis; however, high-solids reactions violate the main underlying assumption of the equation: that the reaction is homogeneous in nature. The ability to accurately predict product yields from enzymatic hydrolysis in high-solids systems will aid in optimizing the conversion process. Molecularly-imprinted materials were studied for use in both bulk adsorption and in column chromatography separations. Glucose-imprinted materials selectively adsorbed glucose compared xylose by nearly 4:1. Non-imprinted materials were neither selective in the type of sugar adsorbed, nor were they capable of adsorbing sugar at as high a capacity as the glucose-imprinted materials. Liquid chromatography with imprinted materials was not a suitable means for separating glucose from solution under the conditions investigated; however, many factors impact the effectiveness of such a separation process and warrant further investigation

    Effects of Sodium Hydroxide Pretreatment on Structural Components of Biomass

    Get PDF
    Pretreatment is a unit operation in the conversion of biomass to valuable products that utilizes various combinations of conditions, including chemicals, heat, pressure, and time, to reduce the recalcitrance of lignocellulose. Many such pretreatments have been developed over the years, as the operating conditions can be adapted so that lignocellulose is modified in ways unique to each pretreatment. By tailoring pretreatment conditions to achieve these modifications, the types of final products produced can be controlled. The purpose of this review is to provide a consolidated source of information for sodium hydroxide effects on lignocellulose. The structural characteristics of lignocellulose and the alterations that occur due to the application of sodium hydroxide are detailed. This review also includes a brief description of the chemical reaction mechanism that ensues during the pretreatment. Lastly, the results of studies that utilized sodium hydroxide pretreatment are discussed

    Enzymatic Hydrolysis of Biomass at High-Solids Loadings – A Review

    Get PDF
    Enzymatic hydrolysis is the unit operation in the lignocellulose conversion process that utilizes enzymes to depolymerize lignocellulosic biomass. The saccharide components released are the feedstock for fermentation. When performed at high-solids loadings (≥ 15% solids, w/w), enzymatic hydrolysis potentially offers many advantages over conversions performed at low- or moderate-solids loadings, including increased sugar and ethanol concentrations and decreased capital and operating costs. The goal of this review is to provide a consolidated source of information on studies using high-solids loadings in enzymatic hydrolysis. Included in this review is a brief discussion of the limitations, such as a lack of available water, difficulty with mixing and handling, insufficient mass and heat transfer, and increased concentration of inhibitors, associated with the use of high solids, as well as descriptions and findings of studies that performed enzymatic hydrolysis at high-solids loadings. Reactors designed and/or equipped for improved handling of high-solids slurries are also discussed. Lastly, this review includes a brief discussion of some of the operations that have successfully scaled-up and implemented high-solids enzymatic hydrolysis at pilot- and demonstration-scale facilities

    A Study of Several Macrocyclic Beta-Ketoamines and Their Metal Chelates.

    Get PDF
    Two new series of macrocyclic (beta)-ketoamines and several of their metal chelates have been prepared and characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry, and elemental analysis. The two series of (beta)-ketoamines are of type: and. where n = 3,6,7, and 10. They were prepared by reaction of macrocyclic (beta)-diketones with ammonia or ethylenediamine. These compounds were found to exist predominantly in the ketoamine form. A survey was conducted to determine the metal chelation behavior of the macrocyclic (beta)-ketoamines and a few (beta)-ketoamines derived from acetylacetone. The metals and oxocations used in this study were Be(II), Mg(II), Al(III), VO(IV), Cr(III), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Rh(III), Pd(II), Cd(II), Pt(II), and UO(,2)(VI). For the cyclic (beta)-ketoamines where n = 3 and 6 no chelates were obtained, while for the macrocyclic (beta)-ketoamines where n = 7 and 10 for the acetylacetone derivatives only Cu(II), Ni(II), and Pd(II) chelates could be obtained in high yield. All of the chelates obtained were extractable with chloroform. Also, the fractional sublimation behavior of these chelates was studied. Although most of these chelates were volatile enough to be sublimed in an entrainer fractional sublimation device at reduced pressure, no practical separations could be achieved. In a separate but somewhat related study, the crystal and molecular structures of bis(cyclodecane-1,3-dionato)copper(II) {Cu(CDD)(,2)} and bis(cyclotridecane-1,3-dionato)copper(II) {Cu(CTDD)(,2)} were determined by single crystal x-ray diffraction analysis. In both compounds the copper atom has square planar coordination with the four oxygen atoms. However, there is a greater degree of distortion in the chelate ring of Cu(CDD)(,2) than in that of Cu(CTDD)(,2)

    Valorization of eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: an integrated and intensified approach

    Get PDF
    The efficient utilization of lignocellulosic biomass and the reduction of production cost are mandatory to attain a cost-effective lignocellulose-to-ethanol process. The selection of suitable pretreatment that allows an effective fractionation of biomass and the use of pretreated material at high-solid loadings on saccharification and fermentation (SSF) processes are considered promising strategies for that purpose. Eucalyptus globulus wood was fractionated by organosolv process at 200 C for 69 min using 56% of glycerol-water. A 99% of cellulose remained in pretreated biomass and 65% of lignin was solubilized. Precipitated lignin was characterized for chemical composition and thermal behavior, showing similar features to commercial lignin. In order to produce lignocellulosic ethanol at high-gravity, a full factory design was carried to assess the liquid to solid ratio (3e9 g/g) and enzyme to solid ratio (8e16 FPU/g) on SSF of delignified Eucalyptus. High ethanol concentration (94 g/L) corresponding to 77% of conversion at 16FPU/g and LSR ¼ 3 g/g using an industrial and thermotolerant Saccharomyces cerevisiae strain was successfully produced from pretreated biomass. Process integration of a suitable pretreatment, which allows for whole biomass valorization, with intensified saccharification-fermentation stages was shown to be feasible strategy for the co-production of high ethanol titers, oligosaccharides and lignin paving the way for cost-effective Eucalyptus biorefinery.Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). The authors also thank the FCT for finacial support under the scope of the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462). AR was supported by Postdoctoral Fellowship PlanI2C/2014 funded by Xunta of Galicia (Spain

    Toward Biochemical Conversion of Lignocellulose On-Farm: Pretreatment and Hydrolysis of Corn Stover \u3cem\u3eIn Situ\u3c/em\u3e

    Get PDF
    High-solids lignocellulosic pretreatment using NaOH followed by high-solids enzymatic hydrolysis was evaluated for an on-farm biochemical conversion process. Increasing the solids loadings for these processes has the potential for increasing glucose concentrations and downstream ethanol production; however, sequential processing at high-solids loading similar to an on-farm cellulose conversion system has not been studied. This research quantified the effects of high-solids pretreatment with NaOH and subsequent high-solids enzymatic hydrolysis on cellulose conversion. As expected, conversion efficiency was reduced; however, the highest glucose concentration (40.2 g L-1), and therefore the highest potential ethanol concentration, resulted from the high-solids combined pretreatment and hydrolysis. Increasing the enzyme dosage improved cellulose conversion from 9.6% to 36.8% when high-solids loadings were used in both unit operations; however, increasing NaOH loading and pretreatment time did not increase the conversion efficiency. The enzyme-to-substrate ratio had a larger impact on cellulose conversion than the NaOH pretreatment conditions studied, resulting in recommendations for an on-farm bioconversion system

    Simultaneous saccharification and fermentation of hydrothermal pretreated lignocellulosic biomass: evaluation of process performance under multiple stress conditions

    Get PDF
    Industrial lignocellulosic bioethanol processes are exposed to different environmental stresses (such as inhibitor compounds, high temperature, and high solid loadings). In this study, a systematic approach was followed where the liquid and solid fractions were mixed to evaluate the influence of varied solid loadings, and different percentages of liquor were used as liquid fraction to determine inhibitor effect. Ethanol production by simultaneous saccharification and fermentation (SSF) of hydrothermally pretreated Eucalyptus globulus wood (EGW) was studied under combined diverse stress operating conditions (3038 °C, 6080 g of liquor from hydrothermal treatment or autohydrolysis (containing inhibitor compounds)/100 g of liquid and liquid to solid ratio between 4 and 6.4 g liquid in SSF/g unwashed pretreated EGW) using an industrial Saccharomyces cerevisiae strain supplemented with low-cost byproducts derived from agro-food industry. Evaluation of these variables revealed that the combination of temperature and higher solid loadings was the most significant variable affecting final ethanol concentration and cellulose to ethanol conversion, whereas solid and autohydrolysis liquor loadings had the most significant impact on ethanol productivity. After optimization, an ethanol concentration of 54 g/L (corresponding to 85 % of conversion and 0.51 g/Lh of productivity at 96 h) was obtained at 37 °C using 60 % of autohydrolysis liquor and 16 % solid loading (liquid to solid ratio of 6.4 g/g). The selection of a suitable strain along with nutritional supplementation enabled to produce noticeable ethanol titers in quite restrictive SSF operating conditions, which can reduce operating cost and boost the economic feasibility of lignocellulose-to-ethanol processes.The authors thank the financial support from the Strategic Project of UID/BIO/04469/2013 CEB Unit and A Romaní postdoctoral grant funded by Xunta of Galicia (Plan I2C, 2014)

    Enzymatic keratin hydrolysis: Dynamic modelling, parameter estimation and validation

    Get PDF
    Keratin rich waste material is an abundant by-product from the agroindustry, particularly the meat and poultry industries: skin remains, bristle, animal hair, horns and hooves, feathers, etc. This waste may not be incinerated due to environmental concerns, so producers seek waste valorization by upcycling this non-biodegradable by-product by depolymerization to extract soluble proteins, which can be used as animal feed supplements. This can be performed thermally, however high temperature processing destroys amino acids which are necessary in the product and are costly to later supplement. A novel two-stage enzymatic de-polymerization process for keratin is being investigated. The first stage involves growing the microbial keratinases on a substrate sample, and is optimized for maximal enzyme production. The second stage uses the keratinases in a bioreactor optimized for substrate hydrolysis. The enzymatic hydrolysis mechanism for keratin is not well documented rendering current the current industrial application limited. This paper presents lab scale experimental results from the second (hydrolysis) stage using a keratinolytic enzymatic cocktail with the filamentous bacterium Amycolatopsis keratiniphila D2 (DSM 44409). Dynamic state data for the product (protein) and substrate (keratin) concentrations following varying substrate loading has been used to construct the first reduced order model for the enzymatic hydrolysis of waste keratin. Potential model applications include to dynamically optimize this second process stage by computing optimal dosage strategies (keratin deposit intervals and volume) to minimize processing time and cost to dispose or repurpose the biochemical waste

    Glucose Recovery from Different Corn Stover Fractions Using Dilute Acid and Alkaline Pretreatment Techniques

    Get PDF
    Background: Limited availability of corn stover due to the competing uses (organic manure, animal feed, bio-materials, and bioenergy) presents a major concern for its future in the bio-economy. Furthermore, biomass research has exhibited different results due to the differences in the supply of enzymes and dissimilar analytical methods. The effect of the two leading pretreatment techniques (dilute acid and alkaline) on glucose yield from three corn stover fractions (cob, stalk, and leaf) sourced from a single harvest in Uganda were studied at temperatures 100, 120, 140, and 160 °C over reaction times of 5, 10, 30, and 60 min. Results: From this study, the highest glucose concentrations obtained from the dilute acid (DA) pretreated cobs, stalks, and leaves were 18.4 g/L (66.8% glucose yield), 16.2 g/L (64.1% glucose yield), and 11.0 g/L (49.5% glucose yield), respectively. The optimal pretreatment settings needed to obtain these yields from the DA pretreated samples were at a temperature of 160 °C over an incubation time of 30 min. The highest glucose concentrations obtained from the alkaline (AL) pretreated cobs, stalks, and leaves were 24.7 g/L (81.73% glucose yield), 21.3 g/L (81.23% glucose yield), and 15.0 g/L (51.92% glucose yield), respectively. To be able to achieve these yields, the optimal pretreatment settings for the cobs and stalks were 140 °C and for a retention time of 30 min, while the leaves require optimal conditions of 140 °C and for a retention time of 60 min. Conclusions: The study recommends that the leaves could be left on the field during harvesting since the recovery of glucose from the pretreated cobs and stalks is higher
    corecore