26 research outputs found

    Aristotelian influence in the formation of medical theory

    Get PDF

    THE GENETIC RECOMBINATION OF SCIENCE AND RELIGION

    Full text link
    The estrangement between genetic scientists and theologians originating in the 1960s is reflected in novel combinations of human thought (subject) and genes (investigational object), paralleling each other through the universal process known in chaos theory as self-similarity. The clash and recombination of genes and knowledge captures what Philip Hefner refers to as irony, one of four voices he suggests transmit the knowledge and arguments of the religion-and-science debate. When viewed along a tangent connecting irony to leadership, journal dissemination, and the activities of the “public intellectual” and the public at large, the sequence of voices is shown to resemble the passage of genetic information from DNA to mRNA, tRNA, and protein, and from cell nucleus to surrounding environment. In this light, Hefner's inquiry into the voices of Zygon is bound up with the very subject matter Zygon covers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79274/1/j.1467-9744.2010.01095.x.pd

    Aristotelian Influence in the Formation of Medical Theory

    No full text

    Laying Anchor: Inserting Precision Health into a Public Health Genetics Policy Course

    No full text
    The United States Precision Medicine Initiative (PMI) was announced by then President Barack Obama in January 2015. It is a national effort designed to take into account genetic, environmental, and lifestyle differences in the development of individually tailored forms of treatment and prevention. This goal was implemented in March 2015 with the formation of an advisory committee working group to provide a framework for the proposed national research cohort of one million or more participants. The working group further held a public workshop on participant engagement and health equity, focusing on the design of an inclusive cohort, building public trust, and identifying active participant engagement features for the national cohort. Precision techniques offer medical and public health practitioners the opportunity to personally tailor preventive and therapeutic regimens based on informatics applied to large volume genotypic and phenotypic data. The PMI’s (All of Us Research Program’s) medical and public health promise, its balanced attention to technical and ethical issues, and its nuanced advisory structure made it a natural choice for inclusion in the University of Michigan course “Issues in Public Health Genetics” (HMP 517), offered each fall by the University’s School of Public Health. In 2015, the instructors included the PMI as the recurrent case study introduced at the beginning and referred to throughout the course, and as a class exercise allowing students to translate issues into policy. In 2016, an entire class session was devoted to precision medicine and precision public health. In this article, we examine the dialogues that transpired in these three course components, evaluate session impact on student ability to formulate PMI policy, and share our vision for next-generation courses dealing with precision health. Methodology: Class materials (class notes, oral exercise transcripts, class exercise written hand-ins) from the three course components were inspected and analyzed for issues and policy content. The purpose of the analysis was to assess the extent to which course components have enabled our students to formulate policy in the precision public health area. Analysis of student comments responding to questions posed during the initial case study comprised the initial or “pre-” categories. Analysis of student responses to the class exercise assignment, which included the same set of questions, formed the “post-” categories. Categories were validated by cross-comparison among the three authors, and inspected for frequency with which they appeared in student responses. Frequencies steered the selection of illustrative quotations, revealing the extent to which students were able to convert issue areas into actual policies. Lecture content and student comments in the precision health didactic session were inspected for degree to which they reinforced and extended the derived categories. Results: The case study inspection yielded four overarching categories: (1) assurance (access, equity, disparities); (2) participation (involvement, representativeness); (3) ethics (consent, privacy, benefit sharing); and (4) treatment of people (stigmatization, discrimination). Class exercise inspection and analysis yielded three additional categories: (5) financial; (6) educational; and (7) trust-building. The first three categories exceeded the others in terms of number of student mentions (8–14 vs. 4–6 mentions). Three other categories were considered and excluded because of infrequent mention. Students suggested several means of trust-building, including PMI personnel working with community leaders, stakeholder consultation, networking, and use of social media. Student representatives prioritized participant and research institution access to PMI information over commercial access. Multiple schemes were proposed for participant consent and return of results. Both pricing policy and Medicaid coverage were touched on. During the didactic session, students commented on the importance of provider training in precision health. Course evaluation highlighted the need for clarity on the organizations involved in the PMI, and leaving time for student-student interaction. Conclusions: While some student responses during the exercise were terse, an evolution was detectable over the three course components in student ability to suggest tangible policies and steps for implementation. Students also gained surety in presenting policy positions to a peer audience. Students came up with some very creative suggestions, such as use of an electronic platform to assure participant involvement in the disposition of their biological sample and personal health information, and alternate examples of ways to manage large volumes of data. An examination of socio-ethical issues and policies can strengthen student understanding of the directions the Precision Medicine Initiative is taking, and aid in training for the application of more varied precision medicine and public health techniques, such as tier 1 genetic testing and whole genome and exome sequencing. Future course development may reflect additional features of the ongoing All of Us Research Program, and further articulate precision public health approaches applying to populations as opposed to single individuals

    Medicaid Expansions: Probing Medicaid’s Filling of the Cancer Genetic Testing and Screening Space

    No full text
    Cancer is the third largest source of spending for Medicaid in the United States. A working group of the American Public Health Association Genomics Forum Policy Committee reviewed 133/149 pieces of literature addressing the impact of Medicaid expansion on cancer screening and genetic testing in underserved groups and the general population. Breast and colorectal cancer screening rates improved during very early Medicaid expansion but displayed mixed improvement thereafter. Breast cancer screening rates have remained steady for Latina Medicaid enrollees; colorectal cancer screening rates have improved for African Americans. Urban areas have benefited more than rural. State programs increasingly cover BRCA1/2 and Lynch syndrome genetic testing, though testing remains underutilized in racial and ethnic groups. While increased federal matching could incentivize more states to engage in Medicaid expansion, steps need to be taken to ensure that they have an adequate distribution of resources to increase screening and testing utilization

    Expert and Advocacy Group Consensus Findings on the Horizon of Public Health Genetic Testing

    No full text
    Description: Among the two leading causes of death in the United States, each responsible for one in every four deaths, heart disease costs Americans 300billion,whilecancercostsAmericans300 billion, while cancer costs Americans 216 billion per year. They also rank among the top three causes of death in Europe and Asia. In 2012 the University of Michigan Center for Public Health and Community Genomics and Genetic Alliance, with the support of the Centers for Disease Control and Prevention Office of Public Health Genomics, hosted a conference in Atlanta, Georgia to consider related action strategies based on public health genomics. The aim of the conference was consensus building on recommendations to implement genetic screening for three major heritable contributors to these mortality and cost figures: hereditary breast and ovarian cancer (HBOC), familial hypercholesterolemia (FH), and Lynch syndrome (LS). Genetic applications for these three conditions are labeled with a “Tier 1” designation by the U.S. Centers for Disease Control and Prevention because they have been fully validated and clinical practice guidelines based on systematic review support them. Methodology: The conference followed a deliberative sequence starting with nationally recognized clinical and public health presenters for each condition, followed by a Patient and Community Perspectives Panel, working group sessions for each of the conditions, and a final plenary session. The 74 conference participants represented disease research and advocacy, public health, medicine and nursing, genetics, governmental health agencies, and industry. Participants drew on a public health framework interconnecting policy, clinical intervention, surveillance, and educational functions for their deliberations. Results: Participants emphasized the importance of collaboration between clinical, public health, and advocacy groups in implementing Tier 1 genetic screening. Advocacy groups could help with individual and institutional buy-in of Tier 1 programs. Groups differed on funding strategies, with alternative options such as large-scale federal funding and smaller scale, incremental funding solutions proposed. Piggybacking on existing federal breast and colorectal cancer control programs was suggested. Public health departments need to assess what information is now being collected by their state cancer registries. The groups advised that information on cascade screening of relatives be included in toolkits for use by states. Participants stressed incorporation of family history into health department breast cancer screening programs, and clinical HBOC data into state surveillance systems. The carrying out of universal LS screening of tumors in those with colorectal cancer was reviewed. Expansion of universal screening to include endometrial tumors was discussed, as was the application of guidelines recommending cholesterol screening of children 9–11 years old. States more advanced in terms of Tier 1 testing could serve as models and partners with other states launching screening and surveillance programs. A multidisciplinary team of screening program champions was suggested as a means of raising awareness among the consumer and health care communities. Participants offered multiple recommendations regarding use of electronic health records, including flagging of at-risk family members and utilization of state-level health information exchanges. The paper contains an update of policy developments and happenings for all three Tier 1 conditions, as well as identified gaps. Conclusions: Implementation of cascade screening of family members for HBOC and FH, and universal screening for LS in CRC tumors has reached a point of readiness within the U.S., with creative solutions at hand. Facilitating factors such as screening coverage through the Patient Protection and Affordable Care Act, and state health information exchanges can be tapped. Collaboration is needed between public health departments, health care systems, disease advocacy groups, and industry to fully realize Tier 1 genetic screening. State health department and disease networks currently engaged in Tier 1 screening can serve as models for the launch of new initiatives

    Public Health Genetics: Surveying Preparedness for the Next Generation of Public Health Professionals

    No full text
    Since the Human Genome Project’s completion in 2003, the need for increased population genetic literacy has grown exponentially. To address this need, public health professionals must be educated appropriately to serve the public best. This study examines the current state of public health genetics education within existing master of public health (MPH) programs. A total of 171 MPH Council on Education for Public Health Accreditation (CEPH)-accredited programs across the nation were identified via a preliminary internet search. The American Public Health Association (APHA) Genomics Forum Policy Committee created 14 survey questions to assess the current status of incorporating genetics/genomics education within MPH programs. Using the Qualtrics survey system through the University of Pittsburgh, a link to the anonymous survey was sent to each director’s email address obtained from their program’s website. There were 41 survey responses, with 37 finished to completion, for a response rate of 21.6% (37/171). A total of 75.7% (28/37) of respondents reported having courses containing genetics/genomics information in their programs’ coursework. Only 12.6% reported such coursework to be required for program completion. Commonly listed barriers to incorporating genetics/genomics include limited faculty knowledge and lack of space in existing courses and programs. Survey results revealed the incongruous and limited incorporation of genetics/genomics within the context of graduate-level public health education. While most recorded programs report offering public health genetics coursework, the extent and requirement of such instruction are not considered necessary for program completion, thereby potentially limiting the genetic literacy of the current pool of public health professionals

    Sequential trials of fluoxetine, phenelzine, and tranylcypromine in the treatment of obsessive--compulsive disorder

    Full text link
    The effects of fluoxetine, phenelzine, and tranylcypromine in obsessive-compulsive disorder (OCD) were compared in an open-label pilot study involving sequential treatment with these agents in six patients. Despite full (or maximally tolerated) trials on these medications, there was no improvement in OC symptoms referable to the pharmacotherapy. Three patients, however, subsequently showed major improvement in symptoms following application of behavioral therapy techniques.Despite the small sample size, this study suggests that there may be many patients with OCD for whom these medications might be poorly tolerated or ineffective, and emphasizes that behavioral-therapeutic techniques can be effective in patients for whom medications prove ineffective or intolerable. Of note, one patient displayed simultaneous manic and OC symptoms, thus undermining previous suggestions that the coexistence of these symptoms may not be possible.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28173/1/0000625.pd
    corecore