7 research outputs found

    Effect of gold nanoparticles on the expression of efflux pump mexA and mexB genes of Pseudomonas aeruginosa strains by Quantitative real-time PCR

    No full text
    Antibiotic-resistant Pseudomonas aeruginosa infections are usually difficult to treat, and there are limited antibiotics for treating them. Increased antibiotic resistance of this bacterium, especially in a multidrug form, has caused many problems for treatment. Nowadays, metal nanoparticles are considered as appropriate alternatives to antibiotics. The objective of the present study was to investigate the effect of gold nanoparticles on the expression of MexB and MexA genes in Pseudomonas aeruginosa isolates.Pseudomonas aeruginosa isolate was identified using biochemical tests and an API kit. The antibiotic sensitivitytest for different antibiotics was performed withthe Kirby-Bauer test according to the CLSI standard. The presence of MexB and MexA genes was assessed by PCR. The effect of gold nanoparticles was investigated by microdilution to evaluate the minimum inhibitory concentration, and the expression of MexB and MexA treated genes was done with silver nanoparticles by the Real-Time PCR method.40 Pseudomonas aeruginosa isolates were detected and identified. These isolates showed significant resistance to various antibiotics. All strains were carriers of MexB and MexA genes, and finally, in the expression of MexB and MexA genes,a significant decrease in the expression of these genes was observed in the samples treated with gold nanoparticles compared to non-treated samples.One of the mechanisms of antibacterial activity of gold nanoparticles is through reducing the expression of mexA and mexB genes and thus reducing the number of active efflux pumps at the cell surface

    Assessment of the Antibacterial Effects of Bismuth Nanoparticles against Enterococcus faecalis

    No full text
    Introduction. Enterococcus faecalis (E. faecalis) is the most important species in dentistry and plays a significant role in the etiology of persistent apical lesions after root canal treatment. Up to date, the intracanal application of 2% chlorhexidine for 7 days is the best way to eliminate E. faecalis. However, due to the ability of this bacterium to persist and survive in harsh environments, many studies have been directed towards finding an alternative strategy for prevention or eradication of it. This study was conducted to investigate the effect of bismuth nanoparticles on E. faecalis, as an etiologic factor in recurrent root canal infections. Methods. Forty patients, referred to Endodontic Ward of Shiraz University of Medical Science for endodontic pretreatment, provided root canal samples. First, all samples were transferred in Enterococcosel broth and incubated. Then, samples which showed growth were plated on blood agar plates and incubated for further PCR procedure. Nanoparticle powder was dissolved in high-purity water, and the final concentration of bismuth nanoparticles (BiNPs) was measured by the spectrophotometer. Minimum inhibitory concentration (MIC) of BiNPs against E. faecalis was determined by microbroth dilution method according to methods for antimicrobial susceptibility tests. Also, bactericidal assays were conducted in Mueller-Hinton broth medium and reported as the concentration of BiNPs that reduced the viable bacterial count by 99.9%. Results. Of all samples, 77.5% revealed the presence of E. faecalis by PCR. Also, E. faecalis growth inhibition was observed at concentrations ranging from 0.625 μg/ml to 20 μg/ml (geometric mean: 2.337 μg/ml), and the MBC values were between 1.25 μg/ml and 40 μg/ml (geometric mean: 4.781 μg/ml), which in comparison with chlorhexidine, these values were about one-eighth of chlorhexidine. Conclusion. The experimental data suggest that bismuth nanoparticles could be an interesting alternative to combat E. faecalis, which, in view of the advantages mentioned for bismuth nanoparticle like inhibiting Streptococcus mutans biofilm formation and higher antibacterial activity compared to chlorhexidine, can be suggested to be used in different fields of dentistry

    Evaluation of Antibiotic Resistance Pattern in Dental Bacteremia Detected by Multiplex PCR Technique

    No full text
    The aim of this study was to detect oral bacteremia and offer the antibiotic resistance patterns. Bacterial resistance pattern was evaluated in 50 patients. A spectrophotometer device equipped with UV and electrophoresis of the extracted samples on agarose gel for antibiogram test were used. PCR test 15 minutes after tooth extraction showed that bacterial strains were extracted from 16 patients. Lactobacillus, Enterococcus faecalis (E. faecalis), Streptococcus sanguinis (S. sanguinis), Streptococcus salivarius (S. salivarius), and Streptococcus mutans (S. mutans) were extracted from 5, 4, 4, 4, and 6 patients. 100% of Lactobacillus, E. faecalis, S. sanguinis, S. salivarius, and S. mutans were sensitive to tigecycline. Most of the Lactobacillus antibiotic resistance was against tetracycline and ciprofloxacin. Antibiotic resistance in S. salivarius was observed in 75% of the cases against piperacillin-tazobactam, ciprofloxacin, and cefotaxime, while in S. mutans was 84% of the cases against ceftriaxone. The results of the current study showed that tooth extraction causes bacteremia before, during, and after tooth extraction. Generally, the highest antibiotic resistance occurred against tetracycline, ciprofloxacin, and ampicillin-sulbactam. In most cases, the bacteria showed partial resistance to these antibiotics; however, tigecycline showed 100% efficacy on all types of bacteria. Streptococcus strains (salivarius, mutans, and sanguinis) were sensitive to most of the antibiotics while antibiotic sensitivity was less evident in Lactobacillus and E. faecalis. Antibiotic resistance has become a critical issue, since it leads to treatment failure when there is a need for antibiotic therapy

    The Antibacterial Effect of Nickel Nanoparticles Against Streptococcus mutans Compared to Chlorhexidine

    No full text
    Background & Objectives: Due to the increasing trend of extensive antibiotic resistance among bacterial strains and side effects, seeking novel methods such as nanoparticles (NPs) is promising for infection eradication. Materials & Methods: Eighteen Streptococcus mutans (S. mutans) clinical isolates were collected from dental plaques. Moreover, S. mutans ATCC25175 standard strain was obtained from Pasteur institute of Iran. Following preparation of nanoparticles, their antibacterial effects were assessed compared to chlorhexidine. The nickel NPs (Ni-NPs) was prepared and its antibacterial effect was compared to the 12% chlorhexidine. The minimum inhibitory and bactericidal concentrations (MIC and MBC, respectively) of Ni-NP (dilution range: 0.125-64µg/mL) were measured using broth microdilution method. Results: The nickel NPs (Ni-NPs) was prepared and its antibacterial effect was compared to the 12% chlorhexidine. The minimum inhibitory and bactericidal concentrations (MIC and MBC, respectively) of Ni-NP (dilution range: 0.125-64µg/mL) were measured using broth microdilution method. The MIC and MBC levels of Ni-NP against the clinical isolates ranged 2-16µg/mL and 4-16µg/mL, respectively. These values against the S. mutans ATCC27175 standard strain included 4 and 8µg/mL, respectively. Furthermore, the MIC and MBC of chlorhexidine against clinical isolates ranged 8-64 and 32-64µg/mL, respectively, while both included 64µg/mL against standard strain (p<0.001). Conclusions: The results of this study outlined that Ni-NPs exert efficient antibacterial effect at nontoxic concentrations compared to 12% chlorhexidine

    New Strategy of Reducing Biofilm Forming Bacteria in Oral Cavity by Bismuth Nanoparticles

    No full text
    Objective. Enterococcus faecalis and Streptococcus salivarius are the most important species in dental decay and producing biofilm. Treatment with chlorhexidine 2% mouthwash for 7 days is the best way to eliminate these bacteria. However, due to the ability of these bacteria to survive in harsh environments, increasing emergence of bacterial resistance against available antibiotics, and favorable properties of nanoparticles including broad spectrum antimicrobial activity and lower toxicity, we decided to evaluate reducing biofilm forming bacteria in oral cavity by bismuth nanoparticles. Materials and Methods. This was a cross-sectional study of 40 samples isolated from the patients visiting dental clinics in Shiraz in 2019. Samples, which showed growth, were cultured on blood agar plates and incubated for the PCR procedure. Nanoparticle powder was dissolved in high-purity water, and the final concentration of bismuth nanoparticles (BiNPs) was measured with a spectrophotometer. Minimum inhibitory concentration (MIC) of BiNPs against E. faecalis and S. salivarius was determined by the microbroth dilution method according to methods for antimicrobial susceptibility tests. Also, bactericidal assays were conducted in a Mueller-Hinton broth medium and reported as the concentration of BiNPs that reduced the viable bacterial count by 99.9%. Statistical analysis was carried out using SPSS 21 and one-way analysis of variance, and P values less than 0.05 were considered significant. Results. MICs of BiNP suspension against Streptococcus salivarius and Enterococcus faecalis were 2.5 and 5 μg/ml, respectively. Minimum bactericidal concentrations (MBC) of BiNP suspension against Streptococcus salivarius and Enterococcus faecalis were 5 and 10 μg/ml, respectively. Antibacterial activity of BiNPs was compared with chlorhexidine 2%. MICs of BiNPs against Streptococcus salivarius and Enterococcus faecalis were one-twentieth less than those of chlorhexidine. MBC of BiNPs against both pathogens was one-tenth less than those of chlorhexidine. Conclusion. BiNPs were more effective than chlorhexidine, and MIC and MBC of bismuth nanoparticles are lower than those of chlorhexidine
    corecore