20 research outputs found

    PDGF-CC induces tissue factor expression: role of PDGF receptor α/β

    Get PDF
    Tissue factor (TF) is the principal trigger of the coagulation cascade and involved in arterial thrombus formation. Platelet-derived growth factor CC (PDGF-CC) is a recently discovered member of the PDGF family released upon platelet activation. This study assesses the impact of PDGF-CC on TF expression in human cells. PDGF-CC concentration-dependently induced TF expression by 2.5-fold in THP-1 cells, by 2.0-fold in human peripheral blood monocytes, by 1.4-fold in vascular smooth muscle cells, and by 2.6-fold in microvascular endothelial cells, but did not affect TF expression in aortic endothelial cells. A similar pattern was observed with PDGF-BB. In contrast, PDGF-AA did not alter TF expression in THP-1 cells. TF whole cell activity was induced following stimulation with PDGF-BB and PDGF-CC in THP-1 cells. Real-time polymerase chain reaction revealed that PDGF-CC induced TF mRNA. PDGF-CC transiently activated p42/44 MAP kinase [extracellular signal-regulated kinase (ERK)], while phosphorylation of the MAP kinases c-Jun NH2-terminal kinase (JNK) and p38 remained unaffected. PD98059, a specific inhibitor of ERK phosphorylation, but not the p38 inhibitor SB203580 or the JNK inhibitor SP600125 prevented PDGF-CC induced TF expression in a concentration-dependent manner. The effect of PDGF-CC was antagonized by both PDGF receptor α and PDGF receptor β neutralizing antibodies; in contrast, PDGF-BB was only inhibited by PDGF receptor β blocking antibody. PDGF receptor α and PDGF receptor β inhibition prevented PDGF-CC-induced ERK phosphorylation. PDGF-CC induces TF expression via activation of α/β receptor heterodimers and an ERK-dependent signal transduction pathwa

    Dietary α-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation

    Get PDF
    Aims Epidemiological studies report an inverse association between plant-derived dietary α-linolenic acid (ALA) and cardiovascular events. However, little is known about the mechanism of this protection. We assessed the cellular and molecular mechanisms of dietary ALA (flaxseed) on atherosclerosis in a mouse model. Methods and results Eight-week-old male apolipoprotein E knockout (ApoE−/−) mice were fed a 0.21 % (w/w) cholesterol diet for 16 weeks containing either a high ALA [7.3 % (w/w); n = 10] or low ALA content [0.03 % (w/w); n = 10]. Bioavailability, chain elongation, and fatty acid metabolism were measured by gas chromatography of tissue lysates and urine. Plaques were assessed using immunohistochemistry. T cell proliferation was investigated in primary murine CD3-positive lymphocytes. T cell differentiation and activation was assessed by expression analyses of interferon-γ, interleukin-4, and tumour necrosis factor α (TNFα) using quantitative PCR and ELISA. Dietary ALA increased aortic tissue levels of ALA as well as of the n−3 long chain fatty acids (LC n−3 FA) eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid. The high ALA diet reduced plaque area by 50% and decreased plaque T cell content as well as expression of vascular cell adhesion molecule-1 and TNFα. Both dietary ALA and direct ALA exposure restricted T cell proliferation, differentiation, and inflammatory activity. Dietary ALA shifted prostaglandin and isoprostane formation towards 3-series compounds, potentially contributing to the atheroprotective effects of ALA. Conclusion Dietary ALA diminishes experimental atherogenesis and restricts T cell-driven inflammation, thus providing the proof-of-principle that plant-derived ALA may provide a valuable alternative to marine LC n−3 F

    Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo

    Get PDF
    Aims Lectin-like oxLDL receptor-1 (LOX-1) mediates the uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells and macrophages. However, the different atherogenic potential of LOX-1-mediated endothelial and macrophage oxLDL uptake remains unclear. The present study was designed to investigate the in vivo role of endothelial LOX-1 in atherogenesis. Methods and results Endothelial-specific LOX-1 transgenic mice were generated using the Tie2 promoter (LOX-1TG). Oxidized low-density lipoprotein uptake was enhanced in cultured endothelial cells, but not in macrophages of LOX-1TG mice. Six-week-old male LOX-1TG and wild-type (WT) mice were fed a high-cholesterol diet (HCD) for 30 weeks. Increased reactive oxygen species production, impaired endothelial nitric oxide synthase activity and endothelial dysfunction were observed in LOX-1TG mice as compared with WT littermates. LOX-1 overexpression led to p38 phosphorylation, increased nuclear factor κB activity and subsequent up-regulation of vascular cell adhesion molecule-1, thereby favouring macrophage accumulation and aortic fatty streaks. Consistently, HCD-fed double-mutant LOX-1TG/ApoE−/− displayed oxidative stress and vascular inflammation with higher aortic plaques than ApoE−/− controls. Finally, bone marrow transplantation experiments showed that endothelial LOX-1 was sufficient for atherosclerosis development in vivo. Conclusions Endothelial-specific LOX-1 overexpression enhanced aortic oxLDL levels, thereby favouring endothelial dysfunction, vascular inflammation and plaque formation. Thus, LOX-1 may serve as a novel therapeutic target for atherosclerosi

    Deletion of L-Selectin Increases Atherosclerosis Development in ApoE−/− Mice

    Get PDF
    Atherosclerosis is an inflammatory disease characterized by accumulation of leukocytes in the arterial intima. Members of the selectin family of adhesion molecules are important mediators of leukocyte extravasation. However, it is unclear whether L-selectin (L-sel) is involved in the pathogenesis of atherosclerosis. In the present study, mice deficient in L-selectin (L-sel−/−) animals were crossed with mice lacking Apolipoprotein E (ApoE−/−). The development of atherosclerosis was analyzed in double-knockout ApoE/L-sel (ApoE−/− L-sel−/−) mice and the corresponding ApoE−/− controls fed either a normal or a high cholesterol diet (HCD). After 6 weeks of HCD, aortic lesions were increased two-fold in ApoE−/− L-sel−/− mice as compared to ApoE−/− controls (2.46%±0.54% vs 1.28%±0.24% of total aortic area; p<0.05). Formation of atherosclerotic lesions was also enhanced in 6-month-old ApoE−/− L-sel−/− animals fed a normal diet (10.45%±2.58% vs 1.87%±0.37%; p<0.05). In contrast, after 12 weeks of HCD, there was no difference in atheroma formation between ApoE−/− L-sel−/− and ApoE−/− mice. Serum cholesterol levels remained unchanged by L-sel deletion. Atherosclerotic plaques did not exhibit any differences in cellular composition assessed by immunohistochemistry for CD68, CD3, CD4, and CD8 in ApoE−/− L-sel−/− as compared to ApoE−/− mice. Leukocyte rolling on lesions in the aorta was similar in ApoE−/− L-sel−/− and ApoE−/− animals. ApoE−/− L-sel−/− mice exhibited reduced size and cellularity of peripheral lymph nodes, increased size of spleen, and increased number of peripheral lymphocytes as compared to ApoE−/− controls. These data indicate that L-sel does not promote atherosclerotic lesion formation and suggest that it rather protects from early atherosclerosis

    Globotriaosylsphingosine Accumulation and Not Alpha-Galactosidase-A Deficiency Causes Endothelial Dysfunction in Fabry Disease

    Get PDF
    BACKGROUND: Fabry disease (FD) is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA) resulting in the accumulation of globotriaosylsphingosine (Gb3) in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known. METHODS AND RESULTS: In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs) were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs. CONCLUSIONS: Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients

    Novel insights into the critical role of bradykinin and the kinin B2 receptor for vascular recruitment of circulating endothelial repair-promoting mononuclear cell subsets:alterations in patients with coronary disease

    No full text
    BACKGROUND: Endothelial injury is considered critical for progression of atherosclerosis and its complications in coronary artery disease (CAD). The endothelial-supportive effects of bradykinin have mainly been attributed to activation of the resident endothelium. Here we newly investigate the role of bradykinin and its B2 receptor for the recruitment and functional activation of circulating mononuclear cell subsets with endothelial-repair promoting capacity, such as CD34(+)CXCR4(+)cells, at sites of arterial injury. METHODS AND RESULTS: Bradykinin-B2-receptor (B2R) blockade by icatibant substantially impaired recruitment of circulating CD34(+)CXCR4(+) mononuclear cells (expressing high levels of B2R) to endothelial cells in vitro and to injured arterial wall in vivo, whereas recruitment of CD14(hi) monocytes (expressing low levels of B2R) was unchanged. Moreover, the capacity of genetically B2R-deficient bone marrow cells to promote endothelial repair in vivo was markedly impaired as compared with wild-type bone marrow cells. B2R expression was reduced on CD34(+)CXCR4(+)mononuclear cells and endothelial repair-promoting early outgrowth cells, but not on CD14(hi)monocytes, from CAD patients as compared with healthy subjects. B2R stimulation induced CD18 activation in early outgrowth cells of healthy subjects, but not in early outgrowth cells of CAD patients. Adenoviral B2R overexpression enhanced in vivo vascular recruitment and rescued impaired endothelial repair capacity of early outgrowth cells from CAD patients. CONCLUSIONS: We newly report that bradykinin/B2R signaling may promote endothelial repair after arterial injury by selective recruitment and functional activation of B2R-expressing circulating mononuclear cell subsets. In CAD patients, B2R downregulation on endothelial repair-promoting circulating mononuclear cells substantially impairs the bradykinin-dependent endothelial repair, representing a novel mechanism promoting endothelial injury in CAD patients

    Gb3 enhances VCAM-1 expression in TNF-α stimulated HMiVECs.

    No full text
    <p><b>A.</b> TNF-α enhances VCAM-1 expression in HMiVECs. Values are indicated as percent of unstimulated control. *p<0.05 vs unstimulated control; Values are representative of at least 4 different experiments; all blots are normalized to GAPDH expression. <b>B.</b> Gb3 enhances VCAM-1 expression in TNF-α stimulated HMaVECs and under basal conditions. Values are indicated as percent of unstimulated control. *p<0.05 vs unstimulated control; **p<0.05 vs TNF-α alone. <b>C./D.</b> GLA gene silencing did not affect expression of VCAM-1.</p
    corecore